Зарядное устройство для разных аккумуляторов lm317

Зарядное устройство для разных аккумуляторов lm317

Доброго времени суток.
В нашем быту множество всяческих устройств, которые могут работать автономно, без 220.
И в каждом из них есть источники питания — батарейки или акумуляторы. И всех их надо подзаряжать.
Благое дело, все комплектуются зарядными от сети 220 В или от сети авто.
Но бывает случаи — зарядное накрылось, сломался разьем, просто забыли/ потеряли. И хорошо, если это просто микроюсб от мобильника, можно попросить у имеющих. Но может случится, что имеющих не окажется, либо они жадные, либо им самим надо.
А если акамулятор/ устройство, которое надо питать имеет нестандартное значение на 6,9,12,14 вольт?
Предлагаю на рассмотрение простейшее универсальное зарядное устройство.
Основой его будет извеснейшая микросхема Lm 317, в даном случае с индексом «Т».
Являет собой регулируемый стабилизатор напряжения или тока, от схемы включения зависит.
Параметры
Регулировка напряжени от 1.2 до 37 В.
Ток до 1.5А
Защита от перегрева
Защита от КЗ.
Ограничение по току
Входное напряжение для нее должно быть минимум на 2 В больше выходного и не превышать 40 В. По простому, микросхема преобразует лишнее напряжение (или ток) = мощьность в тепло.
Если используется достаточно массивный радиатор, способный снижать температуру “язычка” ИС до +60º С, то ИС может рассеивать мощность до 20 Вт.

Пример: входное напряжение ИС составляет 24 В, а выходное – 9 В, разница составляет 15 В. Если ток, потребляемый от стабилизатора составляет 0,1 А, то рассеиваемая мощность составит: 15 В х 0,1 А = 1,5 Вт. В этом случае, небольшой радиатор ИС не помешает.
Какие компоненты надо.
Микросхема — Конденсаторы от бросков и помех
Два сопротивления, постоянное и переменный (крутилка) для задания напряжения или тока.
Желательно припаять диод для защиты от помех и вбросов сети.
Вот схема в картинках регулируемого блока питания.

Если откинуть Трансформатор с диодным мостом, сглаживающий конденсатор и всякие вилки-предохранители, останется то, о чем пишу.

Номиналы указаны на схеме.
Для удобства есть програмки расчета
cxem.net/calc/lm317_calc.php
У микрухи есть аналоги с большим амперажем. Но есть и «камни». Допустим 12 В 5А, это больше 60 Ват трансформатор надо, а это громоздкая и тяжелая штука. Можно переделать компьютерный БП (блок питания), но тут надо поштудировать тему и поднатаскаться. И это только от сети 220. А ЛМ- ку можно от акумулятора. Для полевых условий купить и подключить аналоговый вольтметр для установки и контроля напруги. Если предполагается больше 5 В, то цифровой.
Помимо ЛМ есть готовые китайские модули понижающие и повышающие, кому что заряжать/питать.
voron.ua/catalog/018929
Я использую зарядное от ноутбука 19 В 1,7А. вкупе с ЛМ317Т и мультиметр

Похожие записи

  • Аварийное зарядное 30
  • О солнечной энергии или с китайцами нам не выжить 9

Комментарии ( 15 )

Можно проще на китайсах и питание от повербанка.
На выходе 6-50В плавно резюком
Вот конкретный пример для зарядки Baofeng UV-5R

Немного заопгрейдил поставив радиатор на микруху

Вот как это выглядит

Кому интересно, могу дать ссылку на статью в приват, т.к. ссылка на уцелейку здесь не пройдёт.

LM317

Андрей Барышев, г. Выборг

В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 – 0.3)СА.

Читайте также:  X3 albion prelude как играть

В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

Рисунок 1. Принципиальная схема универсального ЗУ.

Принципиальная схема ЗУ приведена на рис. 1.

Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме – не ниже 36 В. Диоды выпрямительного моста – любые выпрямительные на ток от 0.5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах – от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В – 2.4 В – 3.6 В – 3.9 В – 9 В – 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

Читайте также:  Почему не работает prtscr

Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

Рисунок 2. Печатная плата ЗУ.

ЗУ можно собрать в небольшом корпусе подходящих размеров, например – от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

Рисунок 3. Расположение деталей в корпусе ЗУ.

После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор – микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам – переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт – сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора – когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго – перезаряда его не произойдет.

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Рисунок 4. Внешний вид собранного ЗУ.

Внешний вид зарядного устройства с органами управления показан на рис. 4.

Примечание

Резисторы R3…R8 можно, конечно, заменить одним (номиналом 150 Ом), а остальные контакты переключателя S1 соединить между собой параллельно. Но подключение отдельного резистора на каждый контакт (как показано в схеме рис. 1) позволяет при необходимости произвести более точную настройку на нужное выходное напряжение.

После того как я собрал зарядное устройства на L200C, мне понадобилось еще одно зарядное устройство для АКБ на 6В. Микросхем L200C уже не было, зато было несколько LM317. На которых получаются неплохие полуавтоматические зарядные устройства. Найдя Datasheet на LM317, сразу нашел ту схему и собрал зарядное устройство

Заряжать аккумуляторы собрался от стареньких фонариков, в которых, кстати, стоят голимые зарядные, которых у меня очень много. Зарядное устройство работает на ура

Читайте также:  Как отменить транзакцию биткоин

Вот схема зарядного устройства на LM317

Перечень компонентов зарядного устройства на LM317

C1 = 100нФ
C2 = 1000мФ нужен для подавления импульсов

R1 = 100
R2 = 240
R3 = 1к
R4 = 470
VT1 = КТ3102 Можно взять любой с подходящим коэффициентом передачи

Трансформатор, я брал первый, что под рукой был 9В 20Вт, после моста и фильтра у меня получилось 11В под нагрузкой, диодный мост ставил на 1N4007. Фильтрующий конденсатор, какой первый попался под руку

Теперь рассчитаем номинал R3+ R4 если вы решите заряжать другим напряжением. К примеру 14.4В для 12В АКБ. Рассчитывается по формуле R3+R4=(Vo/1.25-1)*R2, где Vo-напряжение окончания заряда. Для 14,4В R3+R4=(14.4/1.25-1)*240=2525Ом=2.2К+470Ом (подстроечный)

Для расчета максимального тока заряда рассчитаем Ri=0.6/Iз. Где Iз-ток заряда, который должен быть примерно в 10 раз меньше емкости АКБ, но можно и больше. Все ограничивается максимально разрешенным током, который указан на АКБ, и самим LM317, максимальный ток которого 1,5А. К примеру для зарядного тока в 1А, номинал Ri=0.6В/1А=0.6Ом. Даже при самом четком подборе номинала Ri, ток заряда может не соответствовать расчету, поскольку параметры VT1 имеют не слабый разброс. По Расчету напряжение полного открытия транзистора 0,6В. . Так же стоит помнить при расчете что максимальная мощность рассеивания LM317 всего 20Вт. Его можно рассчитать по формуле P(Vi-Vo)*Iз.

Вот печатная плата зарядного устройства на LM317

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Настройка зарядного устройства на LM317:

1.После полной сборки подключаем устройство в сеть. После моста и фильтрующего C1,C2 должно быть напряжение на вольта 3-5 выше, чем вы планируете заряжать АКБ. Такой запас необходим потому что на LM317 падение напряжения где-то 1,25В + под нагрузкой напряжение просядет.

2.Выставляем напряжение зарядки согласно расчетному. Это напряжение должно быть в 1,2 раза выше напряжения АКБ. Снимаем проверяемое напряжение обязательно после защитного диода, поскольку на нем тоже падение в 0,6В

3.При проверки и настройке подключаем все к аккумулятору и проверяем ток заряда, он может отклонятся в любую сторону. Так АКБ должен простоять 10 часов, если вы рассчитывали ток заряда 1:10 от емкости АКБ. После зарядки на клеммах должно быть расчетное конечное напряжение и ток зарядки где-то 20-30мА. Если все верно, зарядка прошла успешна

Так же для защиты своего АБК используйте защиту от переполюсовки для аккумуляторов

На этой ноте я с вами прощаюсь и желаю удачи в повторении

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Admin-чек

Распродажа на АлиЭкспресс. Успей купить дешевле!

Ссылка на основную публикацию
Зависание при установке windows 7
Здравствуйте, дорогие читатели. Рано или поздно все пользователи компьютеров с операционными системами от Microsoft встречаются с ситуацией, когда нужно поменять...
Драйвер для проводной сети windows 7
Доступные загрузки PROWinx64Legacy.exe Windows 7*Windows* 7, 64-разрядная версия PROWin32Legacy.exe Windows 7*Windows* 7, 32-разрядная версия Другие версии Подробное описание Загружаемые файлы...
Драйвер для электронной книги texet
Устали искать драйверы? DriverPack автоматически подберет и установит нужные драйверы Программа DriverPack полностью бесплатна Популярные устройства TeXeT Главная / производители...
Зависит fps от интернета
Здесь легко и интересно общаться. Присоединяйся! Да, правильно говорит) На FPS влияет: производительность компьютера, загруженность и скорость интернет- канала на...
Adblock detector