Технические характеристики системного блока компьютера

Технические характеристики системного блока компьютера

Системный блок – не единое цельное устройство. Он являет собой комплекс из взаимосвязанных комплектующих, каждое из которых определяет технические характеристики и спецификации компьютера.

Как выбрать системный блок: перечень характеристик, на которые необходимо обратить внимание

При выборе системного блока для дома или офиса необходимо обратить внимание на следующие его технические характеристики:

Модель, тактовая частота, количество ядер встроенного процессора;

Объем оперативной памяти;

Объем и тип жесткого диска;

Тактовая частота и объем памяти встроенной видеокарты;

Количество вентиляторов корпуса.

Другие параметры, на которые можно обратить внимание, но не обязательно:

Мощность блока питания;

Технические характеристики материнской платы.

Параметры, которые определяют удобство, но не возможности системного блока:

Наличие привода оптических дисков;

Порты на передней панели;

Порты на задней панели.

Встроенный процессор

Общая производительность компьютера зависит от четырех параметров – тактовая частота процессора, количество его вычислительных ядер, объем оперативной памяти и скорость работы жесткого диска. Характеристики видеокарты или графического ускорителя также имеют значение, но не превалирующее. Они важны в первую очередь для обработки графики – в виде отрисовки моделей в компьютерных играх или рендеринга видео в соответствующих редакторах.

Поэтому, если требуется высокая производительность, требуется и процессор «помощнее» — с 4 ядрами и большой тактовой частотой. Наиболее популярны в этом сегменте модели из линеек Intel Core i5 и i7. Однако стоит помнить и о поколении процессора. Те же Intel Core сейчас существуют в семи поколениях, и первое не слишком производительно – в отличие от последнего.

Модель процессора Intel Core, кроме линейки (i3, i5, i7) дополняется четырехзначным цифровым кодом. Чем это число выше, тем, соответственно, выше производительность чипа.

Объем оперативной памяти

Компьютер при своей работе записывает множество данных в оперативную память. Поэтому, чем выше её объем, тем шустрее будет работать системный блок. Минимальный необходимый сегодня объем – 2 ГБ. Его будет достаточно для «учебы», веб-серфинга, работы с документами и т.д. Оптимальное же значение – 4 ГБ.

Если же потребуется выполнять более требовательные задачи, в том числе играть, то объем оперативной памяти должен быть выше. Для геймерского компьютера необходимый минимум – 8 ГБ.

Объем и тип жесткого диска

На жестком диске компьютера хранятся все необходимые данные – от файлов самой операционной системы до документов, фотографий и загрузок пользователя. Поэтому, чем больше его объем, тем, соответственно, больше информации можно записать в память компьютера.

Минимальный необходимый объем для работы операционной системы – 20 ГБ. Но этого явно недостаточно для пользователя. Например, фильм в приемлемом качестве «весит» 4.5 ГБ. А флагманские игры в установленном виде занимают более 100 ГБ каждая!

Таким образом, выбирать объем жесткого диска нужно исходя из своих потребностей. Но лучше «запастись», чем потом лихорадочно выбирать, что удалить ради освобождения места. Минимальный рекомендуемый объем жесткого диска – 320 ГБ. 500 ГБ – получше. 1 ТБ и больше – если на компьютере планируется устроить «файловое хранилище».

Важен и тип жесткого диска. SSD работают быстрее и стабильнее, чем HDD. Однако они значительно дороже и обладают ограниченным эксплуатационным периодом.

Оптимальной конфигурацией является использование SSD-накопителя небольшого объема (до 100 ГБ) для операционной системы и HDD-диска большого объема (от 500 ГБ) для пользовательских файлов, игр и программ.

Характеристики встроенной видеокарты

Без видеокарты компьютер не сможет выводить изображение на экран. Так что она нужна в любом случае. Однако стоит помнить, что видеокарты бывают двух типов – интегрированная и дискретная.

Интегрированная видеокарта обычно значительно меньшей мощности. Она использует ресурсы самого процессора и оперативной памяти для того, чтобы обрабатывать графическую информацию. Поэтому для игр она практически не подойдет – разве что для самых старых и нетребовательных к техническим характеристикам компьютера.

Дискретная видеокарта лучше подходит для обработки графической информации – как игр, так и рендеринга роликов или редактирования изображений. И, чем она мощнее, тем лучше она справляется с этими обязанностями.

На производительность дискретной видеокарты влияют мощность встроенного вычислительного чипа и объем видеопамяти. И, если информацию по первому параметру получить сложно, то второй обычно указывается на ценниках или в списке технических характеристик системного блока. Если вкратце, то чем больше видеопамяти – тем лучше. Но и дороже. Поэтому покупать системный блок с мощной видеокартой целесообразно в том случае, если необходима игровая конфигурация или система для обработки видео или изображений.

Понять, встроена в системный блок интегрированная или дискретная видеокарта, несложно. Если разъем для подключения экрана находится на верхней части задней панели корпуса – то в нем интегрированная. Если на нижней – то дискретная. Точность этого «теста» достаточно высока.

Количество вентиляторов в корпусе

Практически все компоненты системного блока при работе интенсивно нагреваются. Процессор, например, при выполнении какой-нибудь особенно требовательной задачи может раскалиться до 80-100 градусов! Нагреваются также видеокарта, жесткий диск, блок питания, даже оперативная память и кабели, которые соединяют всё это между собой.

Высокий нагрев приводит к падению производительности и уменьшению эксплуатационного периода системного блока. Для того, чтобы температура не была слишком высокой, наиболее сильно «раскаляющиеся» элементы оснащаются вентиляторами – кулерами. Они устанавливаются, например, на процессор, видеокарту и блок питания.

Но из-за закрытой конфигурации системного блока эти кулеры справляются со своей задачей не слишком успешно. Необходимы дополнительные вентиляторы, которые будут закачивать в корпус холодный воздух и выводить оттуда горячий.

Для средней конфигурации достаточно 1 кулера на задней панели. Если речь заходит о мощном или просто высокопроизводительном системном блоке, требуется больше вентиляторов. 2-3 будет достаточно.

Мощность блока питания

Основная функция блока питания – преобразование переменного тока из бытовой сети в постоянный, необходимый для работы компьютера, и доставка его к комплектующим (материнской плате, видеокарте и т.д.). А мощность этих компонентов напрямую зависит от того, сколько они потребляют тока.

Поэтому, чем больше установлено в системный блок комплектующих и чем более они производительные, тем более мощный блок питания требуется.

Однако стоит учесть, что в готовых конфигурациях уже установлен блок питания достаточной мощности, поэтому волноваться по этому вопросу не требуется. Проблема может возникнуть только при апгрейде (установке новых комплектующих) компьютера. Зачастую мощность блока, устанавливаемого в готовые конфигурации, предельна и не подразумевает подключения других устройств. Тогда при апгрейде потребуется установить новый.

Параметры материнской платы

Материнская плата – основной функциональный элемент компьютера. Именно к ней подключаются остальные комплектующие – от процессора до видеокарты.

Обращать внимание на её характеристики требуется только в том случае, если планируется апгрейд компьютера. Тогда важны следующие параметры:

Количество и тип слотов расширения (потребуются для установки плат расширения – видеокарт, сетевых карт, звуковых карт, специализированных устройств);

Количество и частота слотов оперативной памяти (последний параметр важен для создания оптимизированной конфигурации);

Характеристики чипсета (необходимы для оптимизации взаимодействия всего периферийного оборудования – процессора, видеокарты, постоянной и оперативной памяти, подключенных по USB устройств);

Сокет процессора (определяет, какой процессор можно установить в материнскую плату);

Наличие встроенной видеокарты;

Наличие встроенных «плат расширения» — звуковой, сетевой карты и т.д.;

Конфигурация разъемов (например, если потребуется вывести дополнительный блок USB на переднюю панель, для этого потребуется отдельный разъем).

Читайте также:  Можно ли поменять имя в майле

Однако в подавляющем большинстве случаев на эти параметры можно не обращать внимания.

Резюме

Выбор системного блока начинается с определения целей, для которых он будет использоваться. Исходя из предназначения компьютера, можно выявить необходимые и достаточные характеристики. В первую очередь необходимо обратить внимание на характеристики процессора, оперативной и постоянной памяти, а также видеокарты.

Для специализированных конфигураций также желательно учесть мощность блока питания и количество вентиляторов, встроенных в корпус.

Для конфигураций, которые планируется в дальнейшем апгрейдить, требуется учесть особенности материнской платы, чтобы не пришлось её менять.

Ну и, наконец, желательно учесть удобство пользования системным блоком.

В следующих статьях наши эксперты рассказывают, как выбрать мощный сервер и секреты выбора видеокарты — обзор лучших производителей.

3. Основные характеристики системного блока

Наиболее "весомой" частью любого компьютера является системный блок (иногда его называют компьютером, что является недопустимой ошибкой). Внутри него расположены блок питания, плата с центральным процессором (ЦП), видеоадаптер, жесткий диск, дисководы гибких дисков и другие устройства ввода / вывода информации. Зачастую видеоадаптер и контроллеры ввода/ вывода размещены прямо на плате ЦП. В системном блоке могут размещаться средства мультимедиа: звуковая плата и устройство чтения оптических дисков — CD-ROM.

4. Основные характеристики монитора

Со времени использования монитора для наглядного вывода данных произошло большое конструктивное усовершенствование его функций. Если сначала в качестве монитора использовалась электронно-лучевая трубка обычного телевизионного приемника, то в дальнейшем требования к нему увеличились. В частности, в монохромном стандарте MDA разрешающая способность составляла 720×350 пикселей. В следующем, цветном стандарте CGA, созданном в 1982 году — 640×200 пикселей, EGA 1984 года — 640×350, VGA 1987 года — 640×480, SVGA — 800×600. Сейчас стандартные возможности монитора — 1024×768 при 32-битном представлении цвета, возможно дальнейшее распространение разрешения 1280×1024 пикселей. Это позволяет использовать при изображении документов режим WYSIWYG — режим полного соответствия, то есть изображение на экране представляется идентично тому, что в конечном итоге появится на принтере.

Система дисплея состоит из двух частей: адаптера дисплея и самого монитора. Адаптеры монитора разделяют по поддерживаемому стандарту (EGA, VGA, SVGA), ширине шины (8-битная, 16-ти или более), частоте кадров, частоте строк могут использоваться с графическими сопроцессорами, объему используемых микросхем памяти (до 4 Мбайт и более). Дисплеи различаются по разрешающей способности, шагу точек в линии, частоты развертки, типу развертки (полная или чересстрочная), размеру экрана. Адаптер непрерывно сканирует видеопамять, формирует ТВ-сигнал, который подается в монитор.

После получения копии содержимого видеопамяти эти данные встраиваются в ТВ- сигнал. ТВ-сигнал, в котором закодировано содержимое видеопамяти, выводится по кабелю в монитор. Монитор обрабатывает ТВ-сигнал с данными из видеопамяти и показывает их на экране.

5. Основные характеристики типового периферийного оборудования

Периферийные устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря им компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

o Устройства ввода данных;

o Устройства вывода данных;

o Устройства хранения данных;

o Устройства обмена данными.

Типовое периферийное оборудование должно отвечать простейшим требованиям пользователя.

6. Характеристики (тип разъема, количество контактов, скорость передачи данных) разъемов

Первоначально видеоадаптер имел всего один разъём VGA (15-контактный D-Sub). В настоящее время платы оснащают одним или двумя разъёмами DVI или HDMI, либо Display Port. Порты D-SUB, DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Dispay Port позволяет подключать до четырёх устройств, в том числе акустические системы, USB-концентраторы и иные устройства ввода-вывода. На видеокарте также возможно размещение композитных и S-Video видеовыходов и видеовходов (обозначаются, как ViVo)

Текстурная и пиксельная скорость заполнения, измеряется в млн. пикселей в секунду, показывает количество выводимой информации в единицу времени.

Стандартный последовательный порт RS–232C имеет форму 25–контактного разъема типа D.

Интерфейс RS–232C является наиболее широко распространенной стандартной последовательной связью между микрокомпьютерами и периферийными устройствами. Интерфейс, определенный стандартом Ассоциации электронной промышленности (EIA), подразумевает наличие оборудования двух видов: терминального DTE и связного DCE.

Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем:

D0–D7 — входные–выходные линии данных, подключаемые непосредственно к шине процессора;

RXD — принимаемые данные (входные последовательные данные);

TXD — передаваемые данные (выходные последовательные данные);

CTS — сброс передачи. На этой линии периферийное устройство формирует сигнал низкого уровня, когда оно готово воспринимать информацию от процессора;

RTS — запрос передачи. На эту линию микропроцессорная система выдает сигнал низкого уровня, когда она намерена передавать данные в периферийное устройство.

Все сигналы программируемых микросхем последовательного ввода–вывода ТТЛ–совместимы. Эти сигналы рассчитаны только на очень короткие линии связи. Для последовательной передачи данных на значительные расстояния требуются дополнительные буферы и преобразователи уровней, включаемые между микросхемами последовательного ввода–вывода и линией связи.

Порт параллельного интерфейса был введен в PC для подключения принтера —LP’T-порт (Line PrinTer — построчный принтер).

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в пространстве ввода/вывода. Регистры порта адресуются относительно базового адреса порта, стандартными значениями которого являются 386h, 378h и 278h. Порт имеет внешнюю 8-битную шину данных, 5-битную шину сигналов состояния и 4-битную шину управляющих сигналов.

BIOS поддерживает до четырех LPT-портов (LPT1-LPT4) своим сервисом — прерыванием INT 17h, обеспечивающим через них связь с принтерами по интерфейсу Centronics. Этим сервисом BIOS осуществляет вывод символа, инициализацию интерфейса и принтера, а также опрос состояния принтера.

Традиционный порт SPP (Standard Parallel Port) является однонаправленным портом, на базе которого программно реализуется протокол обмена Centronics. Порт обеспечивает возможность вырабатывания запроса аппаратного прерывания по импульсу на входе АСК#. Сигналы порта выводятся на разъем DB-25S (розетка), установленный непосредственно на плате адаптера (или системной плате) или соединяемый с ней плоским шлейфом. Название и назначение сигналов разъема порта (табл. 2) соответствуют интерфейсу Centronics.

Недостатки стандартного порта частично устраняют новые типы портов, появившихся в компьютерах семейства PS/2.

Двунаправленный порт 1 (Typel parallel port) — интерфейс, введенный с PS/2. Такой порт кроме стандартного режима может работать в режиме ввода или двунаправленном. Протокол обмена формируется программно, а для указания направления передачи в регистр управления порта введен специальный бит: при CR.5=0 буфер данных работает на вывод, при CR.5=1 — на ввод.

Порт с прямым доступом к памяти (Type 3 DMA parallel port) применялся в PS/2 моделей 57, 90, 95. Этот тип был введен для повышения пропускной способности и разгрузки процессора при выводе на принтер. Программе, работающей с данным портом, требовалось только задать блок данных в памяти, подлежащих выводу, и вывод по протоколу Centronics производился без участия процессора.

пропускная способность: высокая до 12 Мбит/с, низкая – 1.5 Мбит/с

наибольшая допустимая длина кабеля для высокой скорости: до 3 м

длина кабеля для низкой пропускной способности: 5 м

максимально допустимое количество устройств (включая размножители): 127

поддерживается способность подключения устройств с разными скоростями обмена

передаваемое напряжение для периферии: 5 В

максимальный потребляемый ток для одного устройства: 500 мА

Фактически USB 2.0 не имеет различий с USB 1.1 кроме существенно большей скорости передачи данных и небольших изменений в протоколе для высокоскоростного режима Hi-speed.

Читайте также:  Как вставить закладки в мозиле

На сегодняшний день существуют три скорости работы устройств USB 2.0:

Low-speed 10-1500 Кбит/с (используется для клавиатуры, мыши, джойстика и пр.)

Full-speed 0,5-12 Мбит/с (аудио/видео устройства)

Hi-speed 25-480 Мбит/с (видео устройства, устройства хранения информации).

Хотя в теории скорость шины USB 2.0 способна достичь 480 Мбит/с, на практике устройства не достигают такой скорости обмена, хотя и могут развивать её. Это объясняется достаточно большими задержками шины USB между запросом на передачу и началом передачи.

В настоящее время многие видеокарты оснащены и портом VGA (Video Graphics Array — графическая видеоматрица), и портом DVI (Digital Video Interface — цифровой видеоинтерфейс), что позволяет подключать как ЭЛТ, так и ЖК-мониторы. В то же время некоторые ЖК-мониторы могут быть подключены как через порт DVI (оптимальный вариант), так и через порт VGA (за неимением порта DVI. К сожалению, поскольку в течение нескольких лет не было единого стандарта для передачи сигналов ЖК-мониторам, порты для подключения этих мониторов периодически изменялись. Далее приведено краткое описание разъемов, с которыми вы столкнетесь при выборе нового ЖК-монитора. Адаптеры служат только для установки соединения между штекером монитора и гнездом порта. Они никак не преобразуют сигналы, которые через них проходят. Цифровые сигналы могут быть восприняты лишь цифровыми мониторами, а аналоговые — только аналоговыми. Мониторы, рассчитанные на получение исключительно цифровых сигналов, не будут рабе тать после подсоединения их через аналоговый порт, даже через адаптер. •DVI-D, DFP. Эти порты и штекеры рассчитаны на передачу только цифровых сигналов. •DVI-A, VGA. Эти порты и штекеры рассчитаны на передачу только аналоговых сигналов. •DVI-T. Многофункциональный порт, который способен передавать ЖК-мониторам как цифровые, т не и аналоговые сигналы. Однако далеко не все видеокарты могут генерировать сигналы обоих типов. Ознакомьтесь внимательно с характеристиками видеокарты и уточните, передает ли она через порт DVI-I аналоговые, цифровые или же те и другие сигналы. Только так вы сможете узнать, какой монитор совместим с этой видеокартой. Штекеры DVI могут иметься как у аналоговых, так и у цифровых ЖК-мониторов. Одинарное соединение. В таких штекерах DVI посредине расположены несколько рядов штырьков. Они обеспечивают максимальное цифровое разрешение 1280 х 1)24 пикселов. Это то же разрешение, что оговаривается стандартом HDTV (Hign Definition TV — телевидение высокой четкости). В настоящее время почти все штекеры DVI пропускают данные через одинарное соединение. Двойное соединение. Такие штекеры DVI имеют полный набор штырьков, что позволяет им обеспечивать разрешение, равное 2048 х 1536. (Это стандарт QXGA, поддерживающий большее разрешение, чем стандарт HDTV.) Мониторы с такими штекерами встр ;чаются пока довольно редко. Установка монитора Убедитесь, что монитор соответствует вашей видеокарте. Плоский ЖК-монитор, который умеет принимать как аналоговые, так и цифровые сигналы, может быть подключен к наибольшему количеству видеокарт. Соответственно, через видеокарту, оснащенную и портом VGA, и аналого-цифровым портом DVI-I, может быть подключено наибольшее количество мониторов. Столкнулись с тем, что разъемы ЖК-монитора и видеокарты не соответствуют друг другу?

Наверное, чтобы ввести клиентов в заблуждение, некоторые производители указывают, что их мониторы имеют 15-штырьковый разъем D-BUS (15-pin mini t>BUS). На сам )м деле это означает, что монитор может быть подключен к обычному порту VGA, присутствующему практически на любой видеокарте. Самые заядлые поклонники компьютерных игр могут приобрести видеокарту с портом VidfeoOut, позволяющую подключать домашний кинотеатр. Хотя в настоящее время размер большинства дисплеев равен 15 или 17 дюймам, серьезные пользователи позволяют себе мониторы с размером экрана 21 дюйм и более. Если ваша видеокарта сопряжена с телевизионным тюнером, вам определенно нужен монитор с большим экраном для получения максимального удовольствия от просмотра телепрограмм.

1. Чтобы подключить монитор, выполните следующие действия:

1. Достаньте монитор из упаковки. Некоторые мониторы поставляются с несколькими кабелями и адаптерами для возможности подключения их к различным видеокартам.

2. Разместите монитор на столе и подсоедините его штекер к соответствующему порту. Если разъемы не подходят, значит, вы либо купили не тот монитор, либо пытаетесь подсоединить его не к той карте.

3. Подключите кабель к компьютеру и убедитесь, что он надежно закреплен со стороны монитора. Большая часть мониторов устанавливается на гарнирной подставке. В этом случае дайте кабелям небольшую слабину. В противном случае, даже слегка повернув монитор, вы можете выдернуть кабель из гнезда.

Системная (материнская) плата

На материнской плате обычно располагаются следующие устройства:

процессор — основная микросхема, выполняющая математические и логические операции;

оперативное запоминающее устройство (ОЗУ) — набор микросхем, предназначенных для временного сохранения данных, пока включен компьютер;

постоянное запоминающее устройство (ПЗУ) — микросхема, предназначенная для долговременного хранения данных, даже при отключенном компьютере;

шина — магистраль, по которой происходит обмен сигналами между внутренними устройствами компьютера;

разъемы для подсоединения дополнительных устройств (слоты) и др.

Основная микросхема компьютера, в которой производятся все вычисления.

В состав МП входят:

устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы;

арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией;

регистровая память (МПП)- служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Эта память состоит из ячеек, которые называются регистрами. Регистры – быстродействующие ячейки памяти различной длины. Обработка информации происходит только в регистрах процессора.

Основными характеристиками процессоровявляются: разрядность, тактовая частота, модель (тип).

Разрядность процессора показывает, сколько бит данных он может принять и обрабатывать в своих регистрах за один раз (за один такт). Чем больше это количество, тем больше информации в единицу времени может быть обработано. Разрядность процессора зависит от разрядности регистров его собственной памяти, в которых размещаются обрабатываемые данные, поступившие из внутренней памяти (информация между процессором и внутренней памятью передается целыми машинными словами).

Первые процессоры семейства х86 были 16-разрядными. Современные процессоры семейства Intel Pentium являются 32 и 64-разрядными.

Тактовая частотапоказывает, сколько элементарных операций (тактов) микропроцессор выполняет в одну секунду. Исполнение каждой команды занимает определенное количество тактов. Чем больше тактов выполняется в единицу времени, тем выше скорость работы компьютера. Таким образом, тактовая частота – количество тактов в секунду – является одной из важнейших характеристик процессора. Она измеряется в мегагерцах (МГц), гигагерцах (ГГц). В компьютере тактовые импульсы задает одна из микросхем – генератор тактовых импульсов. Генератор тактовых импульсов с определенной частотой вырабатывает специальные сигналы – тактовые импульсы, поступающие на устройства компьютера и таким образом синхронизирует их работу. Частота генерируемых импульсов определяет тактовую частоту машины.

Частота генерируемых импульсов является одной из основных характеристик ПК и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не более 4,7 МГц, а сегодня тактовые частоты уже превосходят несколько миллионов тактов в секунду (МГц) и даже несколько миллиардов тактов в секунду (ГГц).

Читайте также:  Почему новая батарея не заряжается до конца

Модель. Определяется фирмой изготовителем. Известные модели: Intel80386, Intel80486, Intel Pentium, Intel Pentium Pro, Intel Pentium 2, Intel Pentium 3, Intel Pentium 4, Intel Celeron, Intel Xeon, а также микропроцессоры фирм AMD Duron, AMD Athlon, Cyrix и др.

Внутренняя память реализуется в виде микросхем. Высокая скорость обмена сигналами с процессором, что обеспечивает быстрый доступ к хранимой информации. Ёмкость внутренней памяти невелика в сравнении с ёмкостью внешних носителей информации. В составе внутренней памяти выделяют оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ), кэш-память, CMOS-память.

Оперативное запоминающее устройство (ОЗУ)

Это устройство, предназначенное для хранения выполняющихся в текущий момент времени программ, а также данных, необходимых для их выполнения. Это набор микросхем, предназначенных для временного хранения данных, когда компьютер включен. В ОЗУ хранится текущая информация (то есть программа и данные) по решаемой задаче, причем она может как считываться, так и записываться. Зависит от источника питания, содержимое исчезает при его отключении. Объем оперативной памяти влияет на производительность компьютера. Современные программы требуют оперативной памяти сотни мегабайтов.

Постоянное запоминающее устройство (ПЗУ)

ПЗУ предназначено для хранения информации, к которой необходим быстрый доступ, но нет возможности с каждым новым включением загружать ее в ОЗУ. Такая информация записывается в ПЗУ в заводских условиях и в дальнейшем может быть только прочитана.

Специальная сверхбыстродействующая память небольшого объема (128-512 Кбайт), которая располагается как бы «между» микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.

Это микросхема памяти для хранения параметров конфигурации компьютера. Эта память выполнена по специальной технологии «CMOS», обладающей низким электропотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера. Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате.

Устройства внешней памяти

К ним относятся накопители на магнитных и оптических дисках, электронные устройства внешней памяти – флэш-память. Их функция – обеспечить чтение и запись информации на внешние носители. Если накопитель работает с дисками, то его называют дисководом. Например, дисковод жестких дисков, дисковод гибких дисков, дисковод компакт-дисков.

Встроенные в системном блоке магнитные диски вместе с дисководом жестких дисков называются винчестером. Это очень важная часть компьютера, поскольку именно здесь хранятся все необходимые для работы компьютера программы. Чтение и запись на жесткий диск производится быстрее, чем на все другие виды внешних носителей, но все-таки медленнее, чем в оперативную память. На современных ПК устанавливают жесткие диски на сотни гигабайтов. Они представляют собой систему, состоящую из механического привода, головок чтения/записи, нескольких носителей и контроллера, обеспечивающего работу всего устройства и передачу данных. Магнитная головка (несколько магнитных головок в специальном позиционере) является одной из наиболее важных частей устройства. Конструкция магнитных головок постоянно совершенствуется. Носитель информации состоит из нескольких дисков, каждый из которых имеет две рабочих поверхности. При записи информации используются магнитные свойства слоя, нанесенного на поверхность. Диски закреплены на шпинделе двигателя. Скорость вращения дисков может быть 3600, 4500, 5400, 7200, 10000, 12000 об/мин. С увеличением скорости вращения дисков увеличивается производительность всей системы. Каждая поверхность любого из дисков разбивается на отдельные дорожки. Дорожки на одной вертикали на всех поверхностях образуют цилиндр. Дорожка разбивается на секторы. Доступ к необходимой информации осуществляется по номеру дорожки, номеру цилиндра, номеру сектора. Плотность записи на внешних секторах меньше, чем на внутренних секторах. Среди характеристик, определяющих производительность винчестера, можно выделить следующие: среднее время доступа, которое определяется временем позиционирования магнитных головок на дорожке и временем ожидания сектора, и скорость обмена данными, которая в основном зависит от используемого интерфейса.

Гибкие магнитные диски (дискеты)служат для хранения программ и данных небольшого объема и удобны для перенесения информации с одной ПЭВМ на другую.

На рабочей поверхности диска (дискеты) по концентрическим окружностям, размещенным на определенном рас­стоянии от центрального отверстия, записываются данные. Стандартный формат дискеты имеет 80 концентрических дорожек. Каждая дорожка разделена на 18 частей, называемые "секторами". Секторы представляют собой основную единицу хранения информации на дискете. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объема запрашиваемой информации, которые называют кластерами.

Емкость таких дисков 1,44 Мбайт. Операции чтения/записи осуществляются контактным способом, когда магнитная головка для чтения/записи соприкасается с поверхностью диска, перемещаясь по радиусу. Во время работы диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти дорожки и производится запись двоичной информации. На дорожки диска записывается двоичный код: намагниченный участок – единица, ненамагниченный – нуль. При чтении с диска эта запись превращается в нули и единицы в битах внутренней памяти.

Устройства CD-ROMиспользуют оптические диски емкостью до 700 Мбайт. Носитель представляет собой диск со светоотражающим слоем на одной стороне, на которой хранится информация. На диск нанесена спиралевидная дорожка от центра к краю диска, состоящая из отражающих и не отражающих свет точек. Считывание производится лазерным лучом. Сначала появились оптические диски, на которые информация записывается только один раз в заводских условиях. Диски CD-R с возможностью записи позволяют однократно записывать информацию на диски пользователем. Луч лазера прожигает пленку на поверхности диска, меняя его отражательную способность. Перезапись невозможна. Диски CD-RW позволяют делать многократную запись на диск. Здесь используется свойство рабочего слоя переходить под действием лазерного луча в кристаллическое или аморфное состояние, имеющие разную отражательную способность. Диск DVD (Digital Versatile Disc) — цифровой универсальный диск. Предназначен для хранения видео, аудио высокого качества, компьютерной информации большого объема. Односторонние однослойные DVD имеют емкость 4,7 Гбайт информации, двухслойные — 8,5 Гбайт; двухсторонние однослойные вмещают 9,4 Гбайт, двухслойные — 17 Гбайт.

Электронное устройство флэш-памятьиспользуется для чтения и записи информации в файловом формате. Это энергонезависимое устройство. Обладает гораздо большим информационным объемом (сотни и тысячи мегабайтов) по сравнению с дисками. Его устанавливают в USB – порт материнской платы.

Для работы компьютера необходим обмен информацией между оперативной памятью и внешними устройствами. Такой обмен называется «вводом-выводом».

Для каждого внешнего устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером (от английского «controller» -«контролёр», «управляющий»). Существует контроллер дисковода, контроллер монитора, контроллер принтера и др. Некоторые контроллеры могут управлять сразу несколькими устройствами.

Одним из контроллеров, которые присутствуют почти в каждом компьютере, является контроллер портов ввода-вывода. Эти порты бывают следующих типов:

параллельные (обозначаемые LPT1-LPT4), к ним обычно подключают принтеры;

последовательные (COM1-COM3), через которые обычно подсоединяют мышь, модем и др.;

usb – порт (цифровые устройства, электронное устройство — флэш – память и др.)

Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Это внутримашинные электронные часы. Таймер подключается к автономному источнику питания – аккумулятору и при отключении машины от сети продолжает работать.

Ссылка на основную публикацию
Тест соловея штрассена c
Символ Якоби отличается от символа Лежандра тем, что в первом знаменатель – составное число, а во втором – простое. Алгоритм...
Стрим с камеры телефона
На сегодняшний день сервис YouTube прочно закрепился на позициях лидера мирового интернет медиарынка. Всего несколько лет назад вести свой канал...
Строки в pascal abc
Для обработки строковой информации в Турбо Паскаль введен строковый тип данных. Строкой в Паскале называется последовательность из определенного количества символов....
Тест стиральной машины bosch maxx 5
Самодиагностика – это очень важная функция, которая отличает современные стиральные машины с электронным управлением от старой аналоговой техники. Запустив сервисный...
Adblock detector