Схема индукционной плиты electrolux

Схема индукционной плиты electrolux

Индукционная плита отличается от обычной тем, что разогревает металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем. При работе с такой плиткой используют посуду, изготовленную из материала, который бы эффективно поглощал энергию вихревых полей. Например обыкновенная сталь, поэтому посуду для индукционных печей можно проверять магнитом. Но не бойтесь ошибиться в выборе материала — современные индукционные плиты автоматически распознают пригодную посуду и только в этом случае включают генератор.

При этом никакого физического нагрева поверхности не происходит. Можно положить на плиту бумагу — она незагорится, или прикоснуться ладонью и не обжечься. В отличии от микроволновки, нагревающей сам продукт изнутри (жидкость, находящуюся в пище), индукционная плита греет только металл и металлическую посуду, которая, в свою очередь, передаёт тепло еде (что-то похожее на обычную электроплиту).

Принцип работы индукционной плиты показан на рисунке.

1 — посуда,
2 — стеклокерамическая поверхность,
3 — изоляция,
4 — индукционная катушка,
5 — преобразователь частоты,
6 — блок управления.

Под стеклокерамической поверхностью плиты индукционная катушка, по которой протекает электрический ток с частотой около 50 кГц. В днище посуды наводятся токи индукции, которые нагревают её, а заодно и помещенные в посуду продукты. В такой плите нагрев происходит быстрее, чем на газовой или на электрической плите — примерно в полтора раза.

Принципиальная схема индукционной плиты довольно сложная, и может существенно отличаться для различных моделей. Особенно блок электронного управления. Хотя основа — генератор, драйвер на транзисторах средней мощности и выходной биполярный транзистор с изолированным затвором, типа IGBT H20R1202 (IRGP 20B120), который управляет катушкой индуктора, одинакова у всех плит. Несколько электросхем показаны ниже — клик для увеличения.

Самый сложный элемент индукционной плитки — электронный блок управления . Он не просто включает или регулирует мощность генератора, а делает это по специальной программе — вначале на пару минут выведет плиту на максимальную мощность, а когда вода закипит, убавит мощность до заданного уровня. А ещё продвинутые модели имеют инфракрасные сенсоры, контролирующие процесс приготовления пищи. Они следят за температурой сковороды или кастрюли и снижают мощность нагрева по достижении заданной вами температуры. Жарка под термоконтролем исключает возможность воспламенения жира и повреждения сковороды вследствие перегрева. После снятия посуды — плита автоматически отключается.

В настоящее время промышленность выпускает как отдельные небольшие индукционные одноконфорочные плитки, так и большие стационарные, встраиваемые четырёхместные поверхности. Стоимость такой плиты несколько выше, чем обычной, но купив индукционную плиту вы существенно сэкономите на электроэнергии — до 50%, по отзывам людей. А также уменьшаете вероятность порчи посуды и продуктов.

Индукционные электроприборы долгое время применялись в металлургии и сварочном деле. Несмотря на кажущуюся сложность устройств, их изготовление не относится к высоким технологиям. Поэтому уже два десятилетия этот принцип широко используется в быту: в частности при создании электроплит.

Поломка оборудования с подобным нагревателем не является большой проблемой, однако сервисные центры выставляют внушительные ценники при каждом обращении. Поэтому при наличии элементарных навыков в радиоделе, можно произвести ремонт индукционной плиты своими руками. Об этом расскажет наш обзор.

Как работает индукционный нагреватель

Принцип работы основан не разогреве металлов индуцированными вихревыми токами. Любой металл, попавший в зону действия высокочастотного магнитного поля, интенсивно нагревается. Для этого необходимо выполнить несколько условий:

  • Материал должен эффективно поглощать энергию вихревого поля. Поэтому посуда для таких плит изготавливается из ферромагнитных металлов. Чаще всего — это сталь.
  • Частота колебаний переменного магнитного поля должна быть не менее, чем 20–60 кГц, для этого применяются соответствующие генераторы.
  • Зона действия индукционного поля очень компактна, поэтому металл (в данном случае дно посуды) должно быть как можно ближе к катушке индуктивности.

С точки зрения физики процесса, это высокочастотный трансформатор.

Роль первичной обмотки выполняет катушка индуктивности, по которой протекает ток высокой частоты. Вторичная обмотка, ни что иное, как дно посуды, в которой при воздействии переменного магнитного поля возникают такие-же токи, как в катушке. Благодаря этому возникает сильный нагрев металла.

Остановимся еще на одном условии:

  • Площадь поверхности обеих катушек (а они конструктивно плоские) должна быть максимально одинаковой.

Только в этом случае обеспечивается баланс передачи энергии. Для чего он нужен? На пустом пространстве (над катушкой индуктивности), вихревые токи работают вхолостую. «Лишняя» энергия магнитного поля начинает перегревать первичную катушку. Кроме того, избыточная температурная нагрузка переходит на выходные каскады генератора высокой частоты. Если радиаторы охлаждения не справляются, схема выходит из строя, и требуется ремонт компонентов индукционной плиты.

Устройство индукционного нагревателя

На иллюстрации изображены основные компоненты нагревательного элемента (условно без верхней «обмотки), то есть посуда отсутствует.

  • Датчик температуры контролирует степень нагрева, и в критических режимах отключает питание.
  • Катушка (первичная обмотка) представляет собой массивный медный проводник, плотно уложенный в виде спирали.
  • Ферриты, размещенные в корпусе, образуют ферромагнитный комплекс вместе с катушкой.
  • Печатная плата генератора переменного тока высокой частоты, оснащена теплоотводом выходного каскада, с принудительным охлаждением (вентилятор).
  • Корпус генератора обеспечивает эффективный обдув всей схемы.
Читайте также:  Титаник на фоне современного лайнера

Настоящие и мнимые неисправности индукционных плит

  1. Не реализуется полная мощность. Как правило, такая ситуация возникает, если дно посуды расположено со смещением от центра конфорки, либо диаметр донышка существенно меньше размера варочной поверхности.Возможно, конфорка неплотно прижимается снизу к декоративной поверхности (ослабли крепления, или лопнули прижимные пружины).Если мощность скачкообразно меняется, причиной может быть срабатывание датчика температуры. Необходимо найти причину перегрева индукционной обмотки. Спираль может перегореть или замкнуть между витками.
  2. Не работает часть конфорок. В первую очередь проверяется подключение питания к неисправным узлам. В каждом генераторе могут быть предохранители. Также, от перегрева может выйти из строя соединительный разъем от блока управления до индуктора.
  3. Нет реакции на сенсорную панель. При наличии жировых загрязнений, сенсоры могут «не чувствовать» ваших пальцев. Произведите очистку поверхности. Если это не помогло, проверяем соединительные шлейфы от управляющей панели до схемы индуктора.
  4. Нет отображения остаточного тепла (фактически — температуры варочной конфорки в рабочем режиме). Причиной может стать поломка термодатчика. Если он исправен (можно проверить на работающей конфорке), следует произвести замену. Разумеется, проверяем надежность подключения соединительных проводов.
  5. Постоянно работает охлаждающий вентилятор. Шум пропеллера может быть слышен некоторое время после окончания работы, индукционная катушка остывает не сразу. Если вентилятор работает сразу после включения питания (когда конфорка выключена), возможно неисправен датчик температуры, или температура в районе варочной поверхности выше +50°C.
  6. Не работает вентилятор. Причины только две: либо перегорел мотор (проверяем принудительной подачей напряжения), либо поломка в цепи управления (термодатчик, управляющий модуль).
  7. Немотивированное отключение варочной панели. Для начала усвоим штатные причины отключения:
    • в течении 10 секунд после включения вы не производите активных действий;
    • конфорки (хотя бы одна из них) в режиме нагрева работают более 2 часов подряд;
    • возможно, задан режим отключения по таймеру на короткий срок.

    Если вышеуказанные причины отсутствуют, разбираемся с температурными датчиками и панелью управления.

  8. Индукционная плита «не видит» посуду. В первую очередь, проверьте материал корпуса кастрюли или сковородки. На ней должно быть соответствующее обозначение (для индукционных плит). В крайнем случае, можно проверить металл с помощью постоянного магнита. Немагнитные материалы (алюминиевые, медные сплавы, нержавеющая сталь) индукционными конфорками не определяются.Если с посудой порядок — снова проверяем датчик температуры и блок управления.
  9. Полезный совет: если подходящей посуды нет, а у вас только индукционная плита, воспользуйтесь подходящим по диаметру ферромагнитным диском. Они есть в продаже, или его можно изготовить из толстой стальной сковороды.

    Правда эффективность приготовления резко снизится, ведь источником тепла будет не сама посуда, а металлический диск. Зато вы сможете готовить на любимой медной сковороде или кастрюле из жаропрочного стекла.

    Важно! Наличие в немагнитной посуде жидкости (даже воды) не заставит работать индукционную конфорку. Это не микроволновка.

    Разборка и ремонт

    Все причины, по которой индукционная варочная панель «имеет право» не работать, проверены: остается полноценный ремонт. В первую очередь, отсоедините плиту от электропитания (даже если вы уверены в себе, как мастер-электрик).

    Затем нужно аккуратно снять декоративную поверхность, для получения доступа к внутренностям. Вне зависимости от бренда производителя, препарированные индукционные плиты выглядят так:

    Производим внешний осмотр. Любые следы копоти, изменение цвета компонентов, следы температурной побежалости на металле, должны вызвать подозрение. Проблему надо искать с внешних проявлений.

    Если ничего подозрительного не обнаружено — действуем по алгоритму «от простого к сложному:

    Совет: процесс ремонта сильно упростится, если в вашем распоряжении окажется принципиальная схема электрической части. Ее можно скачать на профильных ремонтных сайтах или на портале производителя.

    Неважно, что она может быть на английском языке (скорее всего это так). Любой начинающий мастер, умеющий читать схемы, легко в ней разберется.

    Не лишним будет фотографировать каждый шаг, особенно перед демонтажем каждого узла. В последствии вы не допустите ошибок при сборке.

    • Проверяем группу питания: кабель, контакты, блок предохранителей. Для этого нужен мультиметр.
    • Внимательно осматриваем спирали индукционных катушек. На них не должно быть трещин, касаний между витками, посторонних токопроводящих предметов.
    • Вместе с катушками производим осмотр датчиков температуры. Без электросхемы их довольно сложно проверить, но они работают по принципу терморезистора. При нагреве сопротивление должно меняться (снова пригодится мультиметр).
    • Затем тестируем исправность соединительных проводов от индукционной катушки до генератора. Проверяем цепи мультиметром.
    • Осматриваем плату управления. Часто на ней появляются трещины (при температурном воздействии), которые приводят к разрыву токоведущих дорожек. Для этого понадобится мощная лампа (на просвет) и увеличительное стекло.
    • Извлекаем потенциально проблемную конфорку в корпусе с платой генератора. Осматриваем элементную базу. Сгоревшие радиодетали, как правило, видно сразу.
    • Когда по причине обгорания невозможно разобрать номинал, без бумажной схемы подобрать деталь нереально.
    • Если электронный элемент идентифицируется, не обязательно искать точно такой же (фирма изготовитель не имеет значения). Он может оказаться слишком дорогим или дефицитным. Есть базы данных по радиодеталям в интернете: «datasheet». На этих ресурсах можно без труда подобрать аналог.
    • При наличии одинаковых конфорок, можно произвести замену платы генератора, чтобы найти неисправный элемент методом исключения. Вы точно будете знать, что вышло из строя: управление или катушка индуктивности.
    Читайте также:  Коньяк бисквит vsop отзывы

    Самая «популярная» и реальная неисправность

    Если взглянуть на упрощенную схему, становится ясно, что одним из важных компонентов является управляющий транзистор T1 выходного каскада (тот самый, который охлаждается радиатором).

    Именно он подвержен тепловым перегрузкам, особенно в случае применения посуды меньшего диаметра. Работа схемы устроена таким образом, что при повышенной нагрузке на индукционную катушку, резко увеличивается рабочий ток транзистора. Перегоревшая деталь не обязательно диагностируется визуально, поскольку радиатор на месте, и он эффективен. Поэтому, если есть подозрение на выход транзистора из строя, его необходимо проверить индивидуально.

    С помощью мультиметра можно без труда выявить неисправность, и заменить эту ответственную деталь.

    Еще один претендент «на вылет» — это силовой конденсатор. На упрощенной схеме он обозначен как Cr. Он работает непосредственно вместе с индукционной катушкой, и также подвержен перегреву.

    Алгоритм такой же: если на нем нет следов пробоя, выпаиваем и проверяем с помощью мультиметра.

    Для опытного радиолюбителя ремонт платы генератора вполне посильная задача. А новичок может рассчитывать в основном на визуальные проверки и банальную прозвонку элементов.

    Видео по теме

    Индукционные электроприборы долгое время применялись в металлургии и сварочном деле. Несмотря на кажущуюся сложность устройств, их изготовление не относится к высоким технологиям. Поэтому уже два десятилетия этот принцип широко используется в быту: в частности при создании электроплит.

    Поломка оборудования с подобным нагревателем не является большой проблемой, однако сервисные центры выставляют внушительные ценники при каждом обращении. Поэтому при наличии элементарных навыков в радиоделе, можно произвести ремонт индукционной плиты своими руками. Об этом расскажет наш обзор.

    Как работает индукционный нагреватель

    Принцип работы основан не разогреве металлов индуцированными вихревыми токами. Любой металл, попавший в зону действия высокочастотного магнитного поля, интенсивно нагревается. Для этого необходимо выполнить несколько условий:

    • Материал должен эффективно поглощать энергию вихревого поля. Поэтому посуда для таких плит изготавливается из ферромагнитных металлов. Чаще всего — это сталь.
    • Частота колебаний переменного магнитного поля должна быть не менее, чем 20–60 кГц, для этого применяются соответствующие генераторы.
    • Зона действия индукционного поля очень компактна, поэтому металл (в данном случае дно посуды) должно быть как можно ближе к катушке индуктивности.

    С точки зрения физики процесса, это высокочастотный трансформатор.

    Роль первичной обмотки выполняет катушка индуктивности, по которой протекает ток высокой частоты. Вторичная обмотка, ни что иное, как дно посуды, в которой при воздействии переменного магнитного поля возникают такие-же токи, как в катушке. Благодаря этому возникает сильный нагрев металла.

    Остановимся еще на одном условии:

    • Площадь поверхности обеих катушек (а они конструктивно плоские) должна быть максимально одинаковой.

    Только в этом случае обеспечивается баланс передачи энергии. Для чего он нужен? На пустом пространстве (над катушкой индуктивности), вихревые токи работают вхолостую. «Лишняя» энергия магнитного поля начинает перегревать первичную катушку. Кроме того, избыточная температурная нагрузка переходит на выходные каскады генератора высокой частоты. Если радиаторы охлаждения не справляются, схема выходит из строя, и требуется ремонт компонентов индукционной плиты.

    Устройство индукционного нагревателя

    На иллюстрации изображены основные компоненты нагревательного элемента (условно без верхней «обмотки), то есть посуда отсутствует.

    • Датчик температуры контролирует степень нагрева, и в критических режимах отключает питание.
    • Катушка (первичная обмотка) представляет собой массивный медный проводник, плотно уложенный в виде спирали.
    • Ферриты, размещенные в корпусе, образуют ферромагнитный комплекс вместе с катушкой.
    • Печатная плата генератора переменного тока высокой частоты, оснащена теплоотводом выходного каскада, с принудительным охлаждением (вентилятор).
    • Корпус генератора обеспечивает эффективный обдув всей схемы.

    Настоящие и мнимые неисправности индукционных плит

    1. Не реализуется полная мощность. Как правило, такая ситуация возникает, если дно посуды расположено со смещением от центра конфорки, либо диаметр донышка существенно меньше размера варочной поверхности.Возможно, конфорка неплотно прижимается снизу к декоративной поверхности (ослабли крепления, или лопнули прижимные пружины).Если мощность скачкообразно меняется, причиной может быть срабатывание датчика температуры. Необходимо найти причину перегрева индукционной обмотки. Спираль может перегореть или замкнуть между витками.
    2. Не работает часть конфорок. В первую очередь проверяется подключение питания к неисправным узлам. В каждом генераторе могут быть предохранители. Также, от перегрева может выйти из строя соединительный разъем от блока управления до индуктора.
    3. Нет реакции на сенсорную панель. При наличии жировых загрязнений, сенсоры могут «не чувствовать» ваших пальцев. Произведите очистку поверхности. Если это не помогло, проверяем соединительные шлейфы от управляющей панели до схемы индуктора.
    4. Нет отображения остаточного тепла (фактически — температуры варочной конфорки в рабочем режиме). Причиной может стать поломка термодатчика. Если он исправен (можно проверить на работающей конфорке), следует произвести замену. Разумеется, проверяем надежность подключения соединительных проводов.
    5. Постоянно работает охлаждающий вентилятор. Шум пропеллера может быть слышен некоторое время после окончания работы, индукционная катушка остывает не сразу. Если вентилятор работает сразу после включения питания (когда конфорка выключена), возможно неисправен датчик температуры, или температура в районе варочной поверхности выше +50°C.
    6. Не работает вентилятор. Причины только две: либо перегорел мотор (проверяем принудительной подачей напряжения), либо поломка в цепи управления (термодатчик, управляющий модуль).
    7. Немотивированное отключение варочной панели. Для начала усвоим штатные причины отключения:
      • в течении 10 секунд после включения вы не производите активных действий;
      • конфорки (хотя бы одна из них) в режиме нагрева работают более 2 часов подряд;
      • возможно, задан режим отключения по таймеру на короткий срок.
      Читайте также:  Как поставить вибрацию на клавиатуре айфона

      Если вышеуказанные причины отсутствуют, разбираемся с температурными датчиками и панелью управления.

    8. Индукционная плита «не видит» посуду. В первую очередь, проверьте материал корпуса кастрюли или сковородки. На ней должно быть соответствующее обозначение (для индукционных плит). В крайнем случае, можно проверить металл с помощью постоянного магнита. Немагнитные материалы (алюминиевые, медные сплавы, нержавеющая сталь) индукционными конфорками не определяются.Если с посудой порядок — снова проверяем датчик температуры и блок управления.
    9. Полезный совет: если подходящей посуды нет, а у вас только индукционная плита, воспользуйтесь подходящим по диаметру ферромагнитным диском. Они есть в продаже, или его можно изготовить из толстой стальной сковороды.

      Правда эффективность приготовления резко снизится, ведь источником тепла будет не сама посуда, а металлический диск. Зато вы сможете готовить на любимой медной сковороде или кастрюле из жаропрочного стекла.

      Важно! Наличие в немагнитной посуде жидкости (даже воды) не заставит работать индукционную конфорку. Это не микроволновка.

      Разборка и ремонт

      Все причины, по которой индукционная варочная панель «имеет право» не работать, проверены: остается полноценный ремонт. В первую очередь, отсоедините плиту от электропитания (даже если вы уверены в себе, как мастер-электрик).

      Затем нужно аккуратно снять декоративную поверхность, для получения доступа к внутренностям. Вне зависимости от бренда производителя, препарированные индукционные плиты выглядят так:

      Производим внешний осмотр. Любые следы копоти, изменение цвета компонентов, следы температурной побежалости на металле, должны вызвать подозрение. Проблему надо искать с внешних проявлений.

      Если ничего подозрительного не обнаружено — действуем по алгоритму «от простого к сложному:

      Совет: процесс ремонта сильно упростится, если в вашем распоряжении окажется принципиальная схема электрической части. Ее можно скачать на профильных ремонтных сайтах или на портале производителя.

      Неважно, что она может быть на английском языке (скорее всего это так). Любой начинающий мастер, умеющий читать схемы, легко в ней разберется.

      Не лишним будет фотографировать каждый шаг, особенно перед демонтажем каждого узла. В последствии вы не допустите ошибок при сборке.

      • Проверяем группу питания: кабель, контакты, блок предохранителей. Для этого нужен мультиметр.
      • Внимательно осматриваем спирали индукционных катушек. На них не должно быть трещин, касаний между витками, посторонних токопроводящих предметов.
      • Вместе с катушками производим осмотр датчиков температуры. Без электросхемы их довольно сложно проверить, но они работают по принципу терморезистора. При нагреве сопротивление должно меняться (снова пригодится мультиметр).
      • Затем тестируем исправность соединительных проводов от индукционной катушки до генератора. Проверяем цепи мультиметром.
      • Осматриваем плату управления. Часто на ней появляются трещины (при температурном воздействии), которые приводят к разрыву токоведущих дорожек. Для этого понадобится мощная лампа (на просвет) и увеличительное стекло.
      • Извлекаем потенциально проблемную конфорку в корпусе с платой генератора. Осматриваем элементную базу. Сгоревшие радиодетали, как правило, видно сразу.
      • Когда по причине обгорания невозможно разобрать номинал, без бумажной схемы подобрать деталь нереально.
      • Если электронный элемент идентифицируется, не обязательно искать точно такой же (фирма изготовитель не имеет значения). Он может оказаться слишком дорогим или дефицитным. Есть базы данных по радиодеталям в интернете: «datasheet». На этих ресурсах можно без труда подобрать аналог.
      • При наличии одинаковых конфорок, можно произвести замену платы генератора, чтобы найти неисправный элемент методом исключения. Вы точно будете знать, что вышло из строя: управление или катушка индуктивности.

      Самая «популярная» и реальная неисправность

      Если взглянуть на упрощенную схему, становится ясно, что одним из важных компонентов является управляющий транзистор T1 выходного каскада (тот самый, который охлаждается радиатором).

      Именно он подвержен тепловым перегрузкам, особенно в случае применения посуды меньшего диаметра. Работа схемы устроена таким образом, что при повышенной нагрузке на индукционную катушку, резко увеличивается рабочий ток транзистора. Перегоревшая деталь не обязательно диагностируется визуально, поскольку радиатор на месте, и он эффективен. Поэтому, если есть подозрение на выход транзистора из строя, его необходимо проверить индивидуально.

      С помощью мультиметра можно без труда выявить неисправность, и заменить эту ответственную деталь.

      Еще один претендент «на вылет» — это силовой конденсатор. На упрощенной схеме он обозначен как Cr. Он работает непосредственно вместе с индукционной катушкой, и также подвержен перегреву.

      Алгоритм такой же: если на нем нет следов пробоя, выпаиваем и проверяем с помощью мультиметра.

      Для опытного радиолюбителя ремонт платы генератора вполне посильная задача. А новичок может рассчитывать в основном на визуальные проверки и банальную прозвонку элементов.

      Видео по теме

      Ссылка на основную публикацию
      Стрим с камеры телефона
      На сегодняшний день сервис YouTube прочно закрепился на позициях лидера мирового интернет медиарынка. Всего несколько лет назад вести свой канал...
      Смартфоны с флагманской камерой
      Мощный, стильный флагманский смартфон — это не только полезный девайс, но и часть имиджа. Конечно, стоит флагман гораздо дороже, чем...
      Смартфоны хонор в днс
      Нет в наличии Нет в наличии Нет в наличии Нет в наличии Нет в наличии Нет в наличии Нет в...
      Строки в pascal abc
      Для обработки строковой информации в Турбо Паскаль введен строковый тип данных. Строкой в Паскале называется последовательность из определенного количества символов....
      Adblock detector