Как решать подобные слагаемые

Как решать подобные слагаемые

В буквенных выражениях числа могут быть обозначены буквами. Поэтому для всех буквенных выражений верны следующие равенства, выражающие свойства сложения и свойства умножения:

a + b = b + a ab = ba
(a + b) + c = a + (b + c) (ab)c = a(bc)
a + 0 = a a(b + c) = ab + ac
a + (-a) = 0 a = 1 · a
ab = a + (-b) a = -1 · a
a · 0 = 0

С помощью этих свойств можно упрощать буквенные выражения. Например:

Слагаемые 5a, 12a и -7a отличаются только числовыми множителями, такие слагаемые называются подобными.

Подобные слагаемые – это слагаемые, отличающиеся только числовыми множителями и имеющие одинаковую буквенную часть. Пользуясь свойствами сложения и умножения, можно упрощать выражения, содержащие подобные слагаемые. Например, упростим выражение:

Такое упрощение выражения называется приведением подобных слагаемых. В простых примерах промежуточные вычисления можно опустить:

Приведение подобных слагаемых – это упрощение выражения, содержащего подобные слагаемые, путём их сложения.

Пример 1. Приведите подобные слагаемые:

Решение: сначала надо найти в выражении подобные слагаемые:

4x 3y + y 2x

теперь можно их сгруппировать, вынести общий множитель за скобки и привести подобные слагаемые:

Пример 2. Раскройте скобки и приведите подобные слагаемые:

Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.

Например: 2а и –5а ; 13xy и 22xy ; –21abc и

1
3

abc .

Подобные слагаемые отличаются своими числовыми коэффициентами.

Чтобы сложить (привести) подобные слагаемые, надо сложить
их коэффициенты и результат умножить на общую буквенную часть.

Приведем подобные слагаемые в выражениях :

5а + 2а – 3а = (5 + 2 – 3) • а = 4а ;

18x + x – 12x = (18 + 1 – 12) • x = 7x ;

Подобные слагаемые – это одночлены, у которых одинаковы буквенные множители.

одночлены (2)(x) и (5)(x) – подобны, так как и там, и там буквы одинаковы: икс;

одночлены (x^2y) и (-2x^2y) – подобны, так как и там, и там буквы одинаковы: икс в квадрате, умноженный на игрек. То, что перед вторым одночленом стоит знак минус не играет роли, просто у него отрицателен числовой множитель ( коэффициент );

Читайте также:  Как вставить карту памяти в адаптер

одночлены (3xy) и (5x)– не подобны, так как в первом одночлене буквенные множители икс и игрек, а во втором – только икс;

одночлены (xy3yz) и (y^2 z7x) – подобны. Однако чтоб это увидеть, необходимо привести одночлены к стандартному виду . Тогда первый одночлен будет выглядеть как (3xy^2z), а второй как (7xy^2z) — и их подобие станет очевидно;

одночлены (7x^2) и (2x) – не подобны, так как в первом одночлене буквенные множители икс в квадрате (то есть (x·x)) , а во втором – просто один икс.

Как определяются подобные члены не нужно запоминать, лучше просто понять. Почему (2x) и (5x) называют подобными? А вы вдумайтесь: (2x) это тоже самое, что (x+x), а (5x) тоже самое, что (x+x+x+x+x). То есть, (2x) — это «два икса», а (5x) — «пять иксов». И там, и там в основе — одинаковое (подобное): икс. Просто разное «количество» этих самых иксов.

Другое дело, например, (5x) и (3xy). Здесь первый одночлен это по сути «пять иксов», а вот второй — «три икс(·)игреков» ((3xy=xy+xy+xy)). В основе – не одинаковое, не подобное.

Приведение подобных слагаемых

Подобные слагаемые можно складывать и вычитать, заменяя сложные выражения на более простые. Например, выражение (2x+5x) без проблем можно заменить на (7x). Логика такой замены понятна из пояснения выше:

Процесс замены суммы или разности подобных слагаемых одним одночленом называется «приведение подобных слагаемых».

Отметим при этом, что если слагаемые не подобны, то привести их не получится. Например, в сложить (2x^2) и (3x) – нельзя, они же разные!

Поймите, складывать не подобные слагаемые — все равно, что складывать рубли с килограммами: полная бессмыслица получится.

Читайте также:  Что дает аккаунт flyme

Приведение подобных слагаемых – весьма часто встречающийся шаг в упрощении выражений и алгебраических дробей , а также при решении уравнений и неравенств . Давайте посмотрим конкретный пример применения полученных знаний.

Пример. Решить уравнение (7x^2+3x-7x^2-x=6)

В левой части уравнения есть подобные слагаемые: (7x^2) и ((-7x^2)), а также (3x) и ((-x)). Перепишем уравнение так, чтоб они стояли рядом. Для этого меняем местами слагаемые одночлены, не забывая сохранять знаки.

Теперь приводим подобные. (7x^2) и ((-7x^2)) дадут в результате ноль. Действительно, если из (7x^2) вычесть (7x^2) — что получиться? Ноль. Поэтому их можно просто сократить: зачеркнуть. Они не играют роли. А (3x-x) можно записать как (2x).

Получили простое линейное уравнение . Делим его на (2) и получаем ответ.

Каждый раз переписывать уравнение так, чтоб подобные стояли рядом совсем необязательно, можно приводить их сразу. Здесь это было сделано для наглядности дальнейших преобразований.

Хочу задать вопрос

Здравствуйте, Дмитрий.
Уточните — в примере имеется ввиду, что между первой двойкой и скобкой стоит умножение (которое просто опустили для упрощения записи)?
Если да, то оба приведенных вами способа неверны, поскольку в них обоих вы выполняете умножение до деления. Напомню, что умножение и деление имеют одинаковый приоритет и выполняются по очереди в порядке слева направо.
Вот правила, определяющие порядок действий при вычислениях:
1) сначала выполняются действия в скобках
2) затем вычисляются степени, корни, логарифмы, синусы и т.д. (если они есть)
3) затем умножение и деление В ПОРЯДКЕ СЛЕВА НАПРАВО.
4) затем сложение и вычитание в порядке слева направо.
Причем внутри скобок также действуют правила 2, 3 и 4.
Таким образом порядок действий должен быть таким: 8:2*(2+2) =
(вычисляем скобку) = 8:2*4 =
(вычисляем деление) = 4*4 =
(вычисляем умножение) = 16.
Ответ: 16.
P.S. Замечу, что для того, чтоб ваше вычисление было верным, запись должна быть дополнена еще одной скобкой и выглядеть вот так: 8:(2(2+2)). Что вы, кстати и сделали в обоих ваших вычислениях (обратите внимание на появившиеся у вас скобки, которых не было в первоначальном примере)

Читайте также:  Как подключить глонасс к телефону

Присоединяйтесь к нашей группе ВКонтакте

Смотрите нас в YouTube

Ссылка на основную публикацию
Как прошить нокиа 305
Прошивки для Nokia Asha 305 В данном разделе находятся прошивки для Nokia Asha 305. Прошивки, представленные в этом разделе, можно...
Как понять что процессор неисправен
Неисправность центрального процессора (ЦП) – одна из самых неприятных проблем, которая может возникнуть у пользователя персонального компьютера (ПК). Ремонту микросхемы...
Как послать фото в одноклассниках в сообщении
Если вам вдруг захотелось переслать другу какую-нибудь фотографию в сообщении, сделать это несложно. При этом вы сможете прикрепить к сообщению...
Как прошить приставку дом ру
gidrogen Решил написать про приставку Humax HD7000i потому, что наболело. Нет, сама по себе это неплохая штука, есть множество функций....
Adblock detector