Электронная лампа история создания

Электронная лампа история создания

В 1883 году знаменитый изобретатель Эдисон, работая над усовершенствованием лампы накаливания, обнаружил, что помещенная в вакуум нить лампы при сильном нагревании начинает «выбрасывать» в окружающее пространство большое количество электронов. Это явление, названное термоэлектронной эмиссией, получило широкое применение в электронных лампах. Первые электронные лампы имели такие же прозрачные стеклянные баллоны, как и электрические лампы накаливания. Нити накала в них ярко светились. Электронная лампа сегодня имеет стеклянный, металлический или керамический баллон. Внутри баллона укреплены электроды и создается вакуум, чтобы газы не препятствовали движению электронов и электроды служили дольше. Лампа имеет катод и анод. Отрицательный электрод — это катод, он служит источником электронов. Положительный электрод — анод окружает катод. Анод бывает цилиндрической формы или коробки, не имеющей 2-х стенок. Названия электронных ламп зависят от количества электродов: 2 электрода — диод; 3 — триод; 4 — тетрод и т.д.

Лампа Флеминга

Первая электронная лампа была изобретена английским ученым Флемингом в 1904 году. Используя «эффект Эдисона», он создал детектор, который назовут «двухэлектродной трубкой» или «диодом». В стеклянный баллон с разреженным газом Флеминг поместил нить накала, которую окружал металлический цилиндр. При нагревании электрод лампы начинал испускать электроны, вокруг него образовывалось электронное облако. Плотность облака увеличивалась при повышении температуре электрода. Если электроды лампы подключались к источнику тока, возникало электрическое поле. Если отрицательный полюс источника соединялся с нагретым электродом (катодом), а положительный — с холодным (анодом), то электроны под влиянием электрического поля покидали «облако» и направлялись к аноду. Между анодом и катодом появлялся электрический ток. В случае, если анод зарядить отрицательно, он будет отталкивать электроны, а катод с положительным зарядом — притягивать. Тока в цепи не будет. В диоде Флеминга ток шел в одном направлении, т.е. обладал односторонней проводимостью. Приемная схема с диодом Флеминга почти не отличалась от прочих радиосхем и не осуществила переворота в радиотехнике.

Ли де Форест

Выдающимся достижением в этой области стало изобретение американского инженера Ли де Фореста. В 1907 году он создал лампу с дополнительным третьим электродом, названным им «сеткой». Лампу изобретатель назвал «аудином», правда, в дальнейшем ее стали называть «триод». Работа триода, как и любой электронной лампы, построена на движении электронов между катодом и анодом. Третий электрод (сетка) был расположен ближе к катоду, не был сплошным, имел вид спирали из проволоки, пропускал электроны, направленные от катода к аноду. При подаче на сетку не высокого отрицательного напряжения уменьшалась сила анодного тока, т.к. сетка отталкивала какую-то часть электронов, двигавшихся от катода к аноду. Если на сетку поступало высокое отрицательное напряжение, она становилась непреодолимым препятствием для электронов, которые задерживались между катодом и сеткой. Анодный ток прекращался, хотя на катоде был «минус», а на аноде — «плюс». Если на сетку подать положительное напряжение, она начинает притягивать электроны, помогая аноду, сила тока, проходящая через лампу, значительно увеличивается. Итак, подавая на сетку разное напряжение, можно регулировать силу анодного тока. Даже небольшие изменения напряжения, происходящие между катодом и сеткой, вызывают большие изменения анодного тока. Это позволяло использовать электронную лампу для увеличения малых переменных напряжений и, соответственно, для широкого применения на практике.

Появление триодов привело к быстрым эволюционным переменам радиоприемных схем. Появилась возможность усиливать принимаемый сигнал в сотни раз, чувствительность приемников возросла многократно. Уже в 1907 году Ли де Форест предложил схему лампового приемника. Однако первая трехэлектродная лампа имела ряд значительных недостатков. Так, электроды располагались так, что значительная часть электронного потока направлялась на стеклянный баллон, а не на анод. Плохо откачанная лампа содержала молекулы газа, которые, ионизировавшись, оказывали разрушительное воздействие на нить накала. В 1910 году Либен усовершенствовал лампу-триод. Сетка представляла перфорированный лист алюминия и помещалась в центре лампы, поделив ее на 2 части. Внизу находилась платиновая нить накала. Анод в форме спирали из алюминиевой проволоки или прутика размещался в верхней части лампы. Чтобы защитить нить накала, ее покрывали тонким слоем бария или окисла кальция. Для дополнительной ионизации внутрь лампы вводились ртутные пары, что увеличивало катодный ток.

Читайте также:  Bosch pure light h7 тест

Маломощный пентод

Вскоре появились лампы с несколькими сетками: тетроды — лампы с 2-мя сетками; пентоды — с 3-мя. Это были универсальные электронные лампы для усиления напряжения постоянного и переменного токов. Их использовали как детекторы и генераторы электрических колебаний. Появились и комбинированные лампы, в их баллонах было по две, три электронные лампы и назывались они: диод-пентод, триод-пентод и т.д. Такие лампы работали как детекторы (диод) и усилители напряжения (пентод). В зависимости от применения электронные лампы имеют разные размеры: от сверхминиатюрных, не толще карандаша, (радиоприемники, телевизоры и проч.) до огромных, в рост человека, (усилители радиоузлов, радиопередатчики).

В 1883 году знаменитый изобретатель Эдисон, работая над усовершенствованием лампы накаливания, обнаружил, что помещенная в вакуум нить лампы при сильном нагревании начинает «выбрасывать» в окружающее пространство большое количество электронов. Это явление, названное термоэлектронной эмиссией, получило широкое применение в электронных лампах. Первые электронные лампы имели такие же прозрачные стеклянные баллоны, как и электрические лампы накаливания. Нити накала в них ярко светились. Электронная лампа сегодня имеет стеклянный, металлический или керамический баллон. Внутри баллона укреплены электроды и создается вакуум, чтобы газы не препятствовали движению электронов и электроды служили дольше. Лампа имеет катод и анод. Отрицательный электрод — это катод, он служит источником электронов. Положительный электрод — анод окружает катод. Анод бывает цилиндрической формы или коробки, не имеющей 2-х стенок. Названия электронных ламп зависят от количества электродов: 2 электрода — диод; 3 — триод; 4 — тетрод и т.д.

Лампа Флеминга

Первая электронная лампа была изобретена английским ученым Флемингом в 1904 году. Используя «эффект Эдисона», он создал детектор, который назовут «двухэлектродной трубкой» или «диодом». В стеклянный баллон с разреженным газом Флеминг поместил нить накала, которую окружал металлический цилиндр. При нагревании электрод лампы начинал испускать электроны, вокруг него образовывалось электронное облако. Плотность облака увеличивалась при повышении температуре электрода. Если электроды лампы подключались к источнику тока, возникало электрическое поле. Если отрицательный полюс источника соединялся с нагретым электродом (катодом), а положительный — с холодным (анодом), то электроны под влиянием электрического поля покидали «облако» и направлялись к аноду. Между анодом и катодом появлялся электрический ток. В случае, если анод зарядить отрицательно, он будет отталкивать электроны, а катод с положительным зарядом — притягивать. Тока в цепи не будет. В диоде Флеминга ток шел в одном направлении, т.е. обладал односторонней проводимостью. Приемная схема с диодом Флеминга почти не отличалась от прочих радиосхем и не осуществила переворота в радиотехнике.

Ли де Форест

Выдающимся достижением в этой области стало изобретение американского инженера Ли де Фореста. В 1907 году он создал лампу с дополнительным третьим электродом, названным им «сеткой». Лампу изобретатель назвал «аудином», правда, в дальнейшем ее стали называть «триод». Работа триода, как и любой электронной лампы, построена на движении электронов между катодом и анодом. Третий электрод (сетка) был расположен ближе к катоду, не был сплошным, имел вид спирали из проволоки, пропускал электроны, направленные от катода к аноду. При подаче на сетку не высокого отрицательного напряжения уменьшалась сила анодного тока, т.к. сетка отталкивала какую-то часть электронов, двигавшихся от катода к аноду. Если на сетку поступало высокое отрицательное напряжение, она становилась непреодолимым препятствием для электронов, которые задерживались между катодом и сеткой. Анодный ток прекращался, хотя на катоде был «минус», а на аноде — «плюс». Если на сетку подать положительное напряжение, она начинает притягивать электроны, помогая аноду, сила тока, проходящая через лампу, значительно увеличивается. Итак, подавая на сетку разное напряжение, можно регулировать силу анодного тока. Даже небольшие изменения напряжения, происходящие между катодом и сеткой, вызывают большие изменения анодного тока. Это позволяло использовать электронную лампу для увеличения малых переменных напряжений и, соответственно, для широкого применения на практике.

Читайте также:  Свидетель дтп что делать

Появление триодов привело к быстрым эволюционным переменам радиоприемных схем. Появилась возможность усиливать принимаемый сигнал в сотни раз, чувствительность приемников возросла многократно. Уже в 1907 году Ли де Форест предложил схему лампового приемника. Однако первая трехэлектродная лампа имела ряд значительных недостатков. Так, электроды располагались так, что значительная часть электронного потока направлялась на стеклянный баллон, а не на анод. Плохо откачанная лампа содержала молекулы газа, которые, ионизировавшись, оказывали разрушительное воздействие на нить накала. В 1910 году Либен усовершенствовал лампу-триод. Сетка представляла перфорированный лист алюминия и помещалась в центре лампы, поделив ее на 2 части. Внизу находилась платиновая нить накала. Анод в форме спирали из алюминиевой проволоки или прутика размещался в верхней части лампы. Чтобы защитить нить накала, ее покрывали тонким слоем бария или окисла кальция. Для дополнительной ионизации внутрь лампы вводились ртутные пары, что увеличивало катодный ток.

Маломощный пентод

Вскоре появились лампы с несколькими сетками: тетроды — лампы с 2-мя сетками; пентоды — с 3-мя. Это были универсальные электронные лампы для усиления напряжения постоянного и переменного токов. Их использовали как детекторы и генераторы электрических колебаний. Появились и комбинированные лампы, в их баллонах было по две, три электронные лампы и назывались они: диод-пентод, триод-пентод и т.д. Такие лампы работали как детекторы (диод) и усилители напряжения (пентод). В зависимости от применения электронные лампы имеют разные размеры: от сверхминиатюрных, не толще карандаша, (радиоприемники, телевизоры и проч.) до огромных, в рост человека, (усилители радиоузлов, радиопередатчики).

Автор: Члиянц Георгий (UY5XE)

Все статьи на QRZ.RU
Экспорт статей с сервера QRZ.RU
Все статьи категории "Наша история"

Первым изобретателем в этой серии радиоэлектронных компонентов считается английский ученый Джон Амброз Флеминг [1849, Ланкастер — 1945, Сидмут] (член Лондонского королевского общества; в 1877-1881 гг работал под руководством Дж.К.Максвелла; с 1881 г науч. консультант компании Эдиссона в Лондоне; с 1899 г — Компании беспроволочной телеграфии Маркони], который на основании исследований Т.Эдисона в 1904 г изобрел ламповый детектор (диод).

В 1906 г американский радиоинженер-изобретатель и предприниматель Ли Де Форест [1873, штат Айова — 1961, Голливуд] изобрел триод (патент от 1907 г). 5 октября 1956 г в Париже Ли Де Форесту был вручен орден Почетного легиона. Награда пришла к ученому только через 50 лет после открытия, совершенного им. Знаменитый физик Луи Де Бройль назвал открытие Ли Де Фореста одним из величайших в истории науки и техники. При вручении награды он сказал: "Специалисты всех областей науки должны выразить Де Форесту свое почтение, свою признательность и свое восхищение!". [Примечание: вдова изобретателя — Maria Lee DeForest имела радиолюбительский позывной (WB6ZJR).]

Триод с высоким усилением был полностью разработан в 1927 г главным образом благодаря вкладу американца Ирвинга Лангмюра (физик фирмы General Elertric — GE), который предсказал, что заключив лампу в колбу с высоким вакуумом, можно добиться лучших технических характеристик.

В том же году были созданы лампы с цепями накала, питающимися переменным током.

Читайте также:  Заблокировано роскомнадзором что делать

Примерно в этот же период англичанин Х.Дж.Раунд разработал четырехэлектродную лампу — тетрод, идея которого была выдвинута еще раньше Вальтером Шоттки в 1919 г в Германии и независимо от него Э.У.Халлом из фирмы GE в 1923 году. Достигнутое в тетроде повышение коэффициента усиления лампы позволило улучшить чувствительность приемника. Кроме того, дополнительная сетка, введенная в тетрод, привела к уменьшению собственной емкости "управляющая сетка — анод", чем в значительной степени была снята проблема нейтрализации лампового каскада.

В 1929 г голландские исследователи Г.Хольст и Беньямин Д.Х.Теллеген создали приемные маломощные радиочастотные пентоды, в которых были снижены эффекты хаотической эмиссии электронов с анода, влияющие на работу тетрода. В результате была получена лампа с очень высоким коэффициентом усиления, большим анодным сопротивлением и равномерной характеристикой. В мощных лампах пентодная конструкция позволила обеспечить высокую выходную мощность при большом выделении энергии в анодной цепи и без чрезмерных искажений.

Тетрод и пентод, предложенные в 1930 г Стюартом Бэллайтайном и Х.Э.Сноу (сотрудники американской фирмы Radio Frequency Laboratories), снизили в приемниках уровень перекр│стной модуляции, а также уменьшили число деталей, требующихся для схем автоматической регулировки усиления. Когда приобрела популярность радиосвязь с транспортными средствами и стало ясно, что метровый диапазон радиоспектра будет вскоре полностью "забит", крупнейшие производители радиоламп — фирмы Radio Corp. of America (ныне RCA), GE, Westinghouse, Raytheon и Sylvania — развернули работы по трем направлениям одновременно. Исследователи стремились улучшить функциональные свойства ламп, разработать их новые типы и попытаться повысить их верхний частотный предел. Результатами этих работ явились многофункциональный гептод (1932 г), гексод (1933 г) и пятисеточный преобразователь пентагрид (1933 г), а также лампы в металлических корпусах (1935 г). Миниатюрная "желудевая" лампа (1933 г) открыла возможности для более надежной работы в метровом диапазоне. В 1932 г Sylvania выпустила серию ламп с напряжением накала 6,3 В, которую приняли все изготовители радиоаппаратуры.

Знаменательным для своего времени явился тот факт, что в 1932 г журнал "Electronics" привел перечень 300 разных типов выпускаемых радиоламп — вдвое больше, чем их было опубликовано в предыдущем году.

Лучевые тетроды появились в 1936 г. Hе имея защитной сетки, они тем не менее обладали лучшими характеристиками, чем пентоды — позволяли развивать большие анодные токи при сравнительно низком анодном напряжении. В том же году вошли в употребление мощные лампы с нулевым смещением, работающие в режиме класса В.

В 30-х годах получили широкое распространение "электрические глаза" — фотоэлементы.

Катод с косвенным накалом позволил увеличить крутизну мощного пентода в четыре раза. С появлением ламп с большим значением напряжения отсечки стали популярны широкополосные усилители.

В 1936 г ж-л "Радиофронт" (#3, c.19) напечатал оригинальное т.н. "Электронное дерево", которое наглядно отображало хронику развития вакуумных ламп.

Завершена была эта самая плодотворная эра в развитии вакуумных ламп разработкой в 1938 г миниатюрной бесцокольной лампы для дециметрового диапазона и (примерно в то же время) копланарного триода.

К концу 30-х годов вакуумные лампы, с теоретической точки зрения, были изучены достаточно хорошо, что послужило трамплином для дальнейшего развития радиоэлектроники — создания полупроводниковых элементов.

Литература и источники:
1. "Электроника: прошлое, настоящее, будущее" (Пер. с анг. под ред. чл.-кор. АН СССР В.И.Сифорова ["Мир", М., 1980 (296 с.)].
2. Георгий Члиянц. "Радиолюбители и развитие телерадиовещания в Украине" ["ТЕЛЕРАДИОКУРЬЕР", Киев; #6/1999 (c.83-85)].
3. Георгий Члиянц (UY5XE). "У истоков мирового радиолюбительского движения (Хроника: 1898-1928)" [Львов; 2000 (48 с., вкл. фотогр. и ил.)].
4. Г.Члиянц (UY5XE). "История электронных ламп" ["РАДИОМИР"; 2003; #3 (c.40), #4 (c.27), #5 (c.40)].

Ссылка на основную публикацию
Что такое автозагрузка в компьютере
Автозагрузка в Windows 10 В Windows 10 есть много интересных особенностей. Но сейчас речь пойдет о такой штуке, как автозагрузка....
Чернила светятся в ультрафиолете
Употребление симпатических (невидимых) чернил подразумевает запись неразличимую в обычных обстоятельствах, но появляющуюся после фото, химической или физической проявки. Это есть...
Чернила для принтера в шприцах
Заправочные комплекты INKO в шприцах 3х20 мл., с высококачественными чернилами на основе красителя (Dye ink) и пигментные чернила (Pigment ink)...
Что такое айти специалист
Именно в ИТ стремится перейти больше всего представителей других профессиональных областей — там хотел бы работать каждый пятый российский соискатель....
Adblock detector