Формула нахождения средней квадратичной скорости

Формула нахождения средней квадратичной скорости

Так как , то, следовательно, …(11.12)

где – кинетическая энергия всех молекул газа.

Массу газа можно выразить как , тогда (12.12) запишется как ; для одного моля газа, то есть m = M, а V = V

, отсюда

Так как молярную массу можно выразить через массу одной молекулы m и число Авогадро — , то квадратичную скорость можно представить как

где — постоянная Больцмана.

При комнатной температуре молекулы кислорода, например, имеют среднеквадратическую скорость 480м/с, водорода – 1900м/с.

6. Средняя кинетическая энергия поступательного движения молекул газа.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа – она пропорциональна термодина-мической температуре и зависит только от нее, то есть температура тела есть количественная мера энергии движения молекул, из которых состоит это тело. Кроме того, связи между абсолютной температурой и средней кинетической энергией показывает, что при одинаковой температуре средние кинетические энергии молекул всех газов одинаковы, несмотря на различие масс молекул разных газов.

Кинетическая энергия газа состоящего из молекул, равна

, то есть , отсюда , где — концентрация молекул, тогда – получили уравнение состояния идеального газа. Из этих выражений видно, что если то = 0, то есть прекращается поступательное движение молекул идеального газа, а, , его давление равно нулю.

Не следует думать, что при абсолютном нуле температуры, прекращается всякое движение частиц вещества. Даже если все молекулы газа остановятся, то внутри них будут двигаться электроны, будут участвовать в движении протоны и нейтроны ядер.

Абсолютный ноль температур означает для реальной системы не отсутствие движения, но такое состояние тела, при котором дальнейшее уменьшение интенсивности этого движения за счет отдачи его энергии окружающим телам невозможно. Следовательно, при абсолютном нуле система находится в состоянии с наименьшей возможной энергией. Характер этого состояния зависит от конкретных свойств составляющих систему частиц.

7. Любая молекулярная система состоит из большого числа составных частиц (идеальный газ). Эти частицы беспорядочно движутся. Скорости каждой частицы в произвольный момент времени неизвестны. Но, оказываются разные скорости различных частиц встречаются с разными вероятностями. В этом можно убедится на опыте Штерна (1888 – 1970):

Раскаленная током нить расположена на оси двух имеющих общую ось цилиндров. Нить покрыта серебром., атомы которого

испаряясь, покидают нить и по радиусу разлетаются в разные

стороны. Во внутреннем цилиндре сделана узкая щель. Только

те атомы, которые попали в щель, достигают внутренней

поверхности внешнего цилиндра, они создают изображение щели, которое можно увидеть, если через некоторое время развернуть внутреннюю поверхность большого цилиндра. Если прибор привести во вращение вокруг общей оси, то атомы серебра, прошедшие сквозь щель, будут оседать не прямо напротив него, а с некоторым смещением. Если бы всех молекул серебра была одинакова, то и это смещение было бы одинаковым, но опыт показал распределение по скоростям.

Читайте также:  Как копировать фото с инстаграм

Существует некая скорость

около которой расположе-

ны наиболее населенные

интервалы, она называется

наиболее вероятной скоро-

стью Uв и ей соответству-

ет максимум на рисунке.

Чем больше скорость частиц отличается от Uв, тем меньше число таких частиц. С увеличением возрастает наиболее вероятная скорость, больше появится быстрых частиц, вся кривая сместится вправо. Однако площадь под кривой остается постоянной (так как постоянно число частиц), кривая растягивается. Сама кривая называется: распределение Максвелла молекул по скоростям.

Применив методы теории вероятностей, Максвелл нашел функцию распределения по скоростям f (1)

Значение наиболее вероятной скорости можно найти, продифференцировав (1):

(2)

Средняя скорость молекул определяется по формуле:

(3)

Таким образом, состояние газа характеризуется следующими скоростями:

1) наиболее вероятная

2) средняя

3) Средняя квадратичная

Исходя из распределения молекул по скоростям можно определить функцию распределения молекул по энергиям теплового движения

(4)

МОЛЕКУЛЯРНАЯ ФИЗИКА

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

1. Основные положения молекулярно-кинетической теории, строение вещества с точки зрения МКТ.

2. Что называют атомом? Молекулой?

3. Что называют количеством вещества? Какова его единица (дайте определение)?

4. Что называют молярной массой молярным объемом?

5. Каким образом можно определить массу молекул; размер молекул.Какова примерно масса молекул и их размеры?

6. Опишите опыты, подтверждающие основные положения МКТ.

7. Что называется идеальным газом? Каким условиям он должен удовлетворять? При каких условиях реальный газ по своим свойствам близок к нему?

8. Запишите формулы для средней арифметической скорости, средней квадратичной скорости.

9. Что доказывают опыты по диффузии? Броуновскому движению? Объясните их на основе МКТ

10. Что доказывает опыт Штерна? Объясните на основе МКТ.

11. Выведите и сформулируйте основное уравнение МКТ. Какие допущения используют при выводе основного уравнения МКТ.

12. Что характеризует температура тела?

13. Формулировка и математическая запись законов Дальтона, Бойля ­ Мариотта, Гей­ Люссака, Шарля.

14. Какова физическая сущность абсолютного нуля температуры? Запишите связь абсолютной температуры с температурой по шкале Цельсия. Достижим ли абсолютный нуль, почему?

15. Как объяснить давление газов с точки зрения МКТ? От чего оно зависит?

16. Что показывает постоянная Авогадро? Чему равно ее значение?

17. Чему равно значение универсальной газовой постоянной?

18. Чему равно значение постоянной Больцмана?

19. Написать уравнение Менделеева – Клапейрона. Какие величины входят в формулу?

20. Написать уравнение Клапейрона. Какие величины входят в формулу?

21. Что называется парциональным давлением газа?

22. Что называется изопроцессом, какие изопроцессы знаете.

23. Понятие, определение, внутренняя энергия идеального газа.

Читайте также:  Как поставить запятую вверху слова

24. Параметры газа. Вывод объединенного газового закона.

25. Вывод уравнения Менделеева-Клапейрона.

26. Что называется: молярной массой вещества, количеством вещества, относительной атомной массой вещества, плотностью, концентрацией, абсолютной температурой тела? В каких единицах они измеряются?

27. Давление газа. Единицы измерения давления в СИ. Формула. Приборы для измерения давления.

28. Опишите и объясните две температурные шкалы: термодинамическую и практическую.

30. Сформулируйте законы, описывающие все виды изопроцессов?

31. Начертите график зависимости плотности идеального газа от термодинамической температуры для изохорного процесса.

32. Начертите график зависимости плотности идеального газа от термодинамической температуры для изобарного процесса.

33. Чем отличается уравнение Клапейрона-Менделеева от уравнения Клапейрона?

34. Запишите формулу средней кинетической энергии идеального газа.

35. Средняя квадратичная скорость теплового движения молекул.

36. Средняя скорость хаотического движения молекул.

2. Частицы, из которых состоят вещества, называют молекулами. Частицы, из которых состоят молекулы, называют атомами.

3. Величина, которая определяет количество молекул в данном образце вещества, называется количеством вещества. один моль — это количество вещества, которое содержит столько же молекул, сколько атомов углерода содержится в 12 г углерода.

4. Моля́рная ма́сса вещества — масса одного моля вещества (г/моль) Моля́рный объём — объём одного моль вещества, величина, получающаяся от деления молярной массы на плотность.

5. Зная молярную массу, можно вычислить массу одной мо­лекулы: m0 = m/N = m/vNA = М/NA Диаметром молекулы принято считать мини­мальное расстояние, на которое им позволяют сбли­зиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер моле­кул порядка 10-10 м.

7. Идеальный газ – это модель реального газа, которая обладает следующими свойствами:
Молекулы пренебрежимо малы по сравнению со средним расстоянием между ними
Молекулы ведут себя подобно маленьким твердым шарикам: они упруго сталкиваются между собой и со стенками сосуда, никаких других взаимодействий между ними нет.

Молекулы находятся в непрекращающемся хаотическом движении. Все газы при не слишком высоких давлениях и при не слишком низких температурах близки по своим свойствам к идеальному газу. При высоких давлениях молекулы газа настолько сближаются, что пренебрегать их собственными размерами нельзя. При понижении температуры кинетическая энергия молекул уменьшается и становится сравнимой с их потенциальной энергией, следовательно, при низких температурах пренебрегать потенциальной энергией нельзя.

При высоких давлениях и низких температурах газ не может считаться идеальным. Такой газ называют реальным. (Поведение реального газа описывается законами, отличающимися от законов идеального газа.)

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали :

Читайте также:  Силиконовая присоска не держится

— Средняя квадратичная скорость молекул

— Постоянная Больцмана

— Температура

— Масса одной молекулы

— Универсальная газовая постоянная

— Молярная масса

— Количество вещества

— Средняя кинетическая энергия молекул

— Число Авогадро

Средняя арифметическая скорость молекул опр­деляется по формуле

,

где М — молярная масса вещества.

9. Броуновское движение. Однажды в 1827 г. английский ученый Р. Броун, изучая растения при помощи микроскопа, обнаружил очень необычное явление. Плавающие на воде споры (мелкие семена некоторых растений) скачкообразно двигались без видимых на то причин. Броун наблюдал это движение (см. рисунок) несколько дней, однако так и не смог дождаться его прекращения. Броун понял, что имеет дело с неизвестным науке явлением, поэтому он очень подробно его описал. Впоследствии это явление учёные-физики назвали по имени первооткрывателя – броуновским движением.

Объяснить броуновское движение невозможно, если не предположить, что молекулы воды находятся в беспорядочном, никогда не прекращающемся движении. Они сталкиваются друг с другом и с другими частицами. Наталкиваясь на споры, молекулы вызывают их скачкообразные перемещения, что Броун и наблюдал в микроскоп. А поскольку молекулы в микроскоп не видны, то движение спор и казалось Броуну беспричинным.

Диффузия

Как же объяснить ускорение этих явлений? Объяснение одно: повышение температуры тела приводит к увеличению скорости движения составляющих его частиц.

Итак, каковы же выводы из опытов?Самостоятельное движение частиц веществ наблюдается при любой температуре. Однако при повышении температуры движение частиц ускоряется, что приводит к возрастанию ихкинетической энергии. В результате эти более «энергичные» частицы ускоряют протекание диффузии, броуновского движения и других явлений, например растворения или испарения.

10. Опыт Штерна – опыт, в котором была экспериментально измерена скорость молекул. Было доказано, что разные молекулы в газе обладают разной скоростью, а при заданной температуре можно говорить о распределении молекул по скоростям и о средней скорости молекул.

Задача: Вычислить среднюю квадратичную скорость молекул газа, если его масса m = 6 кг, объем V= 4,9 м 3 и давление p = 200 кПа.

Пояснение: Обозначим v 2 среднюю квадратичную скорость молекул, m — массу каждой молекулы газа, n — концентрацию молекул, N —все число молекул в этом объеме. Остальные величины обозначены в условии задачи.

Концентрация молекул газа n равна отношению их числа N в объеме V к этому объему:

Подставим последнее выражение в предыдущую формулу и посмотрим, что получится:

Произведение массы каждой молекулы m0 на их число N в объеме V равно массе m всех молекул в этом объеме, которая нам известна. Значит, заменив произведение mN в знаменателе последней формулы на массу всего газа m, мы решим задачу в общем виде:

Ответ: v 2 = 4,9 · 10 5 м 2 /с 2 .

Ссылка на основную публикацию
Уравнение плоскости по двум пересекающимся прямым
УСЛОВИЕ: Составить уравнение плоскости, проходящей через две параллельные прямые x-2/3=y+1/2=z-3/-2 x-1/3=y-2/2=z+3/-2 Добавил yelymcheav , просмотры: ☺ 1976 ⌚ 2019-05-14 15:35:56....
Тест соловея штрассена c
Символ Якоби отличается от символа Лежандра тем, что в первом знаменатель – составное число, а во втором – простое. Алгоритм...
Тест стиральной машины bosch maxx 5
Самодиагностика – это очень важная функция, которая отличает современные стиральные машины с электронным управлением от старой аналоговой техники. Запустив сервисный...
Уравнение баланса мощностей формула
При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей....
Adblock detector