Что такое кратность числа

Что такое кратность числа

Кратное число — это число, делащееся на данное целое число без остатка; например 12 кратно 3.

Найти, вычислить кратные с калькулятором

Данный калькулятор позволяет расчитать кратные чисел до ста его значений.
В поле с исходным значением XX введите число, кратное которого требуется вычислить, затем нажмите на кнопку Вычислить для того что бы калькулятор произвел расчет.

На калькуляторе можно вычислить значения таких кратных как: числа кратные 1, числа кратные 2, числа кратные 3, и т.д.

Кратное — это произведение целого числа на любое другое целое число. Например, первые шесть чисел, кратных 3: 3, 6, 9, 12, 15 и 18. Это легко проверить на примерах ниже:

3 x 1 = 3 ;
3 x 2 = 6 ;
3 x 3 = 9 ;
3 x 4 = 12 ;
3 x 5 = 15 ;
3 x 6 = 18.

Два и более чисел могут иметь общие кратные. Например, наименьшее общее кратное (НОК) 3 и 7 равно 21, т. е. произведению этих двух чисел.

Определение кратного числа

Число называется кратным некоторому натуральному числу , если оно нацело делится на . При этом говорят что кратно .

Некоторые признаки делимости натуральных чисел

Признак делимости на 2.

Число делится на 2, если его последняя цифра есть число четное (то есть 2, 4, 6, 8) или 0.

Признак делимости на 3.

Число делится на 3, если сумма его цифр делится на 3.

Признак делимости на 4.

Число делится на 4, если две его последние цифры — нули или образуют число, делящееся на 4.

Признак делимости на 5.

Число делится на 5, если оно заканчивается либо на 0, либо на 5.

Признак делимости на 8.

Число делится на 8, если три его последние цифры — нули или образуют число, делящееся на 8.

Читайте также:  Самый лучший линукс для ноутбука

Признак делимости на 9.

Число делится на 9, если сумма его цифр делится на 9.

Признак делимости на 11.

Число делится на 11, если сумма цифр, стоящих на четных местах либо равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на число, делящееся на 11.

Признак делимости на 25.

Число делится на 5, если две его последние цифры — нули или образуют число, делящееся на 25.

Задание. Среди ниже перечисленных чисел выбрать числа кратные 3:

Решение. Будем использовать признак делимости на 3, для этого найдем сумму цифр для каждого числа:

; ;

;

Таким образом, на 3 делятся числа:

Ответ.

Наименьшее общее кратное (НОК)

Общим кратным нескольких натуральных чисел называется натуральное число, являющееся кратным для каждого из них. Наименьшее из всех кратных называется наименьшим общим кратным (НОК).

Алгоритм нахождения наименьшего общего кратного нескольких чисел:

  1. выписать каноническое разложение данных чисел;
  2. перечислить все простые множители, входящие в канонические разложения данных чисел;
  3. возвести каждый множитель в наибольшую степень, с которой он входит в каноническое разложение данных чисел.

Задание. Найти НОК(360; 420)

Решение. Запишем каноническое разложение заданных чисел:

и

Выпишем все простые множители, которые входят в каноническое разложение заданных чисел: . И возведем их в наибольшую степень, с которой они входят в разложения этих чисел. Получим

НОК(360; 420)

Ответ. НОК(360; 420)

Тема «Кратные числа» изучается в 5 классе общеобразовательной школы. Ее целью является совершенствование письменных и устных навыков математических вычислений. На этом уроке вводятся новые понятия — «кратные числа» и «делители», отрабатывается техника нахождения делителей и кратных натурального числа, умение находить НОК различными способами.

Эта тема является очень важной. Знания по ней можно применить при решении примеров с дробями. Для этого нужно найти общий знаменатель путем расчета наименьшего общего кратного (НОК).

Читайте также:  Телефон с экстренной кнопкой вызова

Кратным А считается целое число, которое делится на А без остатка.

Каждое натуральное число имеет бесконечное количество кратных ему чисел. Наименьшим считается оно само. Кратное не может быть меньше самого числа.

Нужно доказать, что число 125 кратно числу 5. Для этого нужно первое число разделить на второе. Если 125 делится на 5 без остатка, то ответ положительный.

Все натуральные числа можно разделить на 1. Кратное является делителем для себя самого.

Как мы знаем, числа при делении называются «делимое», «делитель», «частное».

где 27 – делимое, 9 – делитель, 3 – частное.

Числа, кратные 2, – это те, которые при делении на два не образуют остатка. К ним относятся все четные.

Числа, кратные 3, – это такие, которые без остатка делятся на 3 (3, 6, 9, 12, 15…).

Например, 72. Это число кратно числу 3, потому что делится на 3 без остатка (как известно, число делится на 3 без остатка, если сумма его цифр делится на 3)

Является ли число 11 кратным 4?

Ответ: не является, так как есть остаток.

Общее кратное двух или более целых чисел — это такое, которое делится на эти числа без остатка.

Для каждого числа необходимо отдельно выписать в строку кратные числа — вплоть до нахождения одинакового.

Данный способ применим для небольших чисел.

При расчёте НОК встречаются особые случаи.

1. Если необходимо найти общее кратное для 2-х чисел (например, 80 и 20), где одно из них (80) делится без остатка на другое (20), то это число (80) и есть наименьшее кратное этих двух чисел.

2. Если два простых числа не имеют общего делителя, то можно сказать, что их НОК – это произведение этих двух чисел.

Читайте также:  Принтер марает бумагу при печати

Рассмотрим последний пример. 6 и 7 по отношению к 42 являются делителями. Они делят кратное число без остатка.

В этом примере 6 и 7 являются парными делителями. Их произведение равно самому кратному числу (42).

Число называется простым, если делится только само на себя или на 1 (3:1=3; 3:3=1). Остальные называются составными.

В другом примере нужно определить, является ли 9 делителем по отношению к 42.

Ответ: 9 не является делителем числа 42, потому что в ответе есть остаток.

Делитель отличается от кратного тем, что делитель – это то число, на которое делят натуральные числа, а кратное само делится на это число.

Наибольший общий делитель чисел a и b, умноженный на их наименьшее кратное, даст произведение самих чисел a и b.

А именно: НОД (а, b) х НОК (а, b) = а х b.

Общие кратные числа для более сложных чисел находят следующим способом.

Например, найти НОК для 168, 180, 3024.

Эти числа раскладываем на простые множители, записываем в виде произведения степеней:

Дальше выписываем все представленные основания степеней с самыми большими показателями и перемножаем их:

Ссылка на основную публикацию
Adblock detector