Что нужно для создания робота

Что нужно для создания робота

Сделать робота очень просто Давайте разберемся, что же потребуется чтобы создать робота в домашних условиях, для того чтобы понять основы робототехники.

Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) – микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 – у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание – залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 – она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.

Теперь мы можем заняться нашим микроконтроллером. Корпус у МК — DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания – это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря – глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.

О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема – L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы – подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND — их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор – он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех — от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.

Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза – справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Читайте также:  Чем отличается обычная версия от портативной

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер – простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию – уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков – установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.

ATmega16 в корпусе DIP-40>

L7805 в корпусе TO-220

L293D в корпусе DIP-16 х2 шт.

резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.

конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ

конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.

диод 1N4001 или 1N4004

кварцевый резонатор на 16 МГц

ИК-диоды: подойдут любые в количестве двух штук.

фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей

О моём роботе

В данный момент мой робот практически завершён.

На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

Теперь, вы выбрали все основные компоненты для сборки робота. Изготовление робота начинается со следующего шага — необходимо спроектировать и построить основание или каркас. Каркас держит их всех вместе и придает вашему роботу законченный вид и форму.

Создание каркаса

Нет никакого «идеального» способа создания каркаса. Почти всегда требуется компромисс. Возможно, вам нужен легкий каркас. Но может потребоваться использование дорогостоящих материалов или слишком хрупких материалов.

Вы можете захотеть сделать надежное или большое шасси. Хоты вы понимаете, что это будет дорого, тяжело или сложно в производстве. Ваш «идеальный» каркас или рама может быть очень сложным.Изготовление каркаса робота может потребовать слишком много времени для разработки и создания.

При этом простой каркас может быть не менее хорошим. Идеальная форма встречается редко, но некоторые проекты могут выглядеть более элегантно из-за своей простоты. Возможно другие проекты могут привлечь внимание из-за их сложности.

Материалы

Существует много материалов, которые вы можете использовать для создания основания. Вы используете все множество материалов для создания не только роботов, но и других устройств. Следовательно вы получите хорошее представление о том, что наиболее подходит для данного проекта.

Список предлагаемых строительных материалов, приведенных ниже включает только наиболее распространенные. Как только вы используете некоторые из них, вы сможете поэкспериментировать с теми, которые не входят в список, или объединить их вместе.

Использовать существующие коммерческие продукты

Вероятно, вы видели школьные проекты, которые были основаны на существующих массовых продуктах. В первую очередь таких как бутылки, картонные коробки и т.д. Это, по сути, «повторное использование» продукта.

Оно может либо сэкономить вам много времени и денег. Хотя и может создать дополнительные хлопоты и головную боль. Есть много очень хороших примеров того, как перепрофилировать материалы и сделать из них очень хорошего робота.

Основной строительный материал

Например, изготовление робота из картона. Некоторые из самых основных строительных материалов могут быть использованы для создания отличных каркасов. Одним из самых дешевых и наиболее доступных материалов является картон. Вы часто можете найти картон бесплатно, и его можно легко вырезать, согнуть, склеить и сложить.

Может быть вы можете создать усиленную картонную коробку, которая выглядит намного более красиво. И она соответствует размеру вашего робота. Затем вы можете нанести эпоксидную смолу или клей, чтобы сделать ее более долговечной. В заключение дополнительно можно разукрасить ее.

Плоский материал для конструкции

Один из наиболее распространенных способов сделать раму – это использовать стандартные материалы, такие как лист фанеры, пластика или металла. И просверлить отверстия для подключения всех исполнительных механизмов и электроники. Прочный кусок фанеры может быть довольно толстым и тяжелы. В то самое время как тонкий лист металла может быть слишком гибким.

Например, доску или фанеру из плотной древесины можно легко разрезать с помощью пилы, просверлить (не опасаясь разрушения), покрасить, отшлифовать и т.д. Следовательно вы можете устанавливать устройства с двух сторон. Например, подключить двигатели и колесики колес к нижней части, а электронику и аккумулятор к верхней части. При этом древесина останется неподвижной и твердой.

Лазерная резка, изогнутый пластик или металл

Если вы находитесь на том этапе, когда вам необходим внешний блок, то лучшим вариантом будет высокоточная резка деталей лазером. Любая ошибка в расчетах будет дорогостоящей и приведет к порче материалов. Для изготовления робота нужна собственная мастерская. Возможно нужно найти компанию, производящую такой тип роботов. Может быть она предлагает множество других услуг, включая работы с металлом и покраску.

3D-печать

3D принтер, печатающий раму или каркас, редко бывает наиболее обоснованным решением (потому что он печатает послойно). В результате этого процесса можно создавать очень сложные формы. Такие формы было бы невозможно (или очень сложно) изготовить другими способами.

Отдельная трехмерная печатная деталь может содержать все необходимые монтажные точки для всех электрических и механических компонентов. При этом способе изготовления каркаса сохраняется незначительный вес изделия. Изготовление робота потребует дополнительной обработки и шлифовки.

Поскольку 3D-печать становится более популярной, цена на детали также снижается. Дополнительно преимуществом 3D-печати является не только то, что ваш дизайн легко воспроизводить, но и им легко делиться. При помощи нескольких кликов мышки можно получить все инструкции по дизайну и файлы САПР.

Полиморф

При комнатной температуре полиморф является твердым пластиком. При нагревании (например, в горячей воде) он становится податливым и может быть сформирован в сложные детали. Затем они охлаждаются и затвердевают в прочные пластмассовые детали.

Обычно пластиковые детали требуют высоких температур и необходимы различные формы для изготовления. Изготовление робота таким способом делает их недоступными для большинства любителей. Например, вы можете комбинировать различные формы (цилиндры, плоские листы и т.д.).

Так формируются сложные пластмассовые структуры, которые выглядят как сделанные промышленным способом. Вы также можете экспериментировать с различными формами и достичь с помощью этого материала многого.

Изготовление робота

Конструирование и изготовление робота нужно производить с учетом выбранных материалов и методов. Выполните следующие шаги, чтобы создать эстетичную, простую и структурно обоснованную раму робота меньшего размера.

  • Сначала нужно сделать прототип конструкции, выполненный из бумаги, картона или металла.
  • Получите все комплектующие, которые потребуются для изготовления робота (электрические и механические), и измерьте их.
  • Если у вас нет всех ваших деталей под рукой, вы можете обратиться к размерам, предоставленным производителем.
  • Проведите мозговой штурм и набросайте несколько разных конструкций каркаса в общих чертах. Не делайте это слишком подробно.
  • После того, как вы выбрали дизайн, убедитесь что компоненты будут хорошо поддерживаться.
  • Нарисуйте каждую часть вашего робота в бумаге или картоне со шкалой 1:1 (реальный размер). Вы также можете нарисовать их с помощью программного обеспечения САПР и распечатать их.
  • Протестируйте свой дизайн в САПР и в реальной жизни с помощью прототипа бумаги, проверив каждую деталь и соединения.
  • Если вы абсолютно уверены, что ваш дизайн правильный, наконец начните изготавливать каркас из выбранных материалов. Помните, дважды измерьте и вырежьте только один раз!
  • Перед монтажом рамы проверьте соответствие каждого компонента и, если потребуются, модифицируйте его.
  • Соберите свою раму, используя горячий клей, винты, гвозди или любые другие соединения, которые вы выбирали для изготовления своего робота.
  • Установите все компоненты на каркас. Так вы только что создали робота с нуля!

Сборка компонентов робота, из приведенного выше списка заслуживает отдельного рассмотрения.

Сборка компонентов робота

На предыдущих уроках вы выбрали электрические компоненты и исполнительные механизмы. Теперь вам нужно, чтобы они все работали вместе. Как всегда, техническое описание и руководства — это ваши друзья, когда вы понимаете, как должно работать ваше роботизированное оборудование.

Читайте также:  Мобильный телефон как модем для ноутбука

Подключение двигателей к контроллерам двигателей

Электродвигатель постоянного тока или линейный привод постоянного тока, скорее всего, имеют два провода: красный и черный. Подключите красный провод к клемме M + на контроллере двигателя постоянного тока, а черный — к M- .

Реверсирование проводов приведет только к вращению двигателя в противоположном направлении. У сервомотора, есть три провода: один черный (GND), красный (от 4,8 до 6 В) и желтый (сигнал положения). Контроллер серводвигателя имеет контакты, соответствующие этим проводам, поэтому сервопривод может быть подключен непосредственно к нему.

Подключение аккумуляторов к контроллеру двигателя или к микроконтроллеру

Изготовление робота включает в себя подключение электропитания. Большинство контроллеров моторов имеют две винтовые клеммы для проводов батареи, обозначенных как B + и B- . Если ваша батарея поставляется с разъемом, а ваш контроллер использует винтовые клеммы, вы можете найти разъем для соединения с проводами.

Провода вы можете подключить к винтовому соединению. Хотя вам может потребоваться найти другой способ подключения аккумулятора к контроллеру двигателя.Возможно, что не все электромеханические устройства, которые вы выбрали для своего робота, могут работать при одинаковом напряжении.

Следовательно, могут потребоваться несколько цепей управления батареями или напряжением. Ниже приведены обычные уровни напряжения, используемые в общих компонентах роботизированных платформ:

  • электродвигатели постоянного тока — от 3 до 24 В
  • стандартные серводвигатели — от 4,8 В до 6 В
  • специальные сервомоторы — от 7,4 до 12 В
  • шаговые двигатели — от 6 до 12 В
  • микроконтроллеры обычно включают регуляторы напряжения — от 3 до 12 В
  • датчики — 3,3 В, 5 В и 12 В
  • контроллеры постоянного тока — от 3 до 48 В
  • стандартные батареи: 3.7V, 4.8V, 6V, 7.4V, 9V, 11.1V и 12V.

Если вы создаёте робота с двигателями постоянного тока, микроконтроллером и, возможно, сервомеханизмом или двумя, то можно легко понять, что одна батарея не может напрямую управлять всем. Прежде всего, мы рекомендуем выбрать батарею, к которой можно напрямую подключать как можно больше устройств.

Батарея с наибольшей емкостью должна быть связана с приводными двигателями. Например, если выбранные вами двигатели рассчитаны на номинальное напряжение 12 В, то ваша основная батарея также должна быть 12 В. Дополнительно вы можете использовать регулятор для питания микроконтроллера на 5 В.

Техника безопасности при работе с аккумуляторами

Внимание: аккумуляторные батареи являются мощными устройствами и могут легко сжечь ваши цепи, если они подключены неправильно. Прежде всегда тройная проверка правильной полярности и возможности работы устройства с энергией, обеспечиваемой батареей.

Если вы не уверены, не «догадывайтесь». Электричество намного быстрее, чем вы, и к тому времени, когда вы поймете, что что-то не так, волшебный синий дым уже пойдет от вашего устройства.

Подключение контроллеров двигателя к микроконтроллеру

Микроконтроллер может взаимодействовать с контроллерами двигателя различными способами:

  1. Стандартный: контроллер имеет два контакта с маркировкой Rx (прием) и Tx (передача). Подключите контакт Rx контроллера двигателя к выходу Tx микроконтроллера и наоборот.
  2. I2C: контроллер двигателя будет иметь четыре контакта: SDA, SCL, V, GND. Ваш микроконтроллер будет иметь те же четыре контакта, но не обязательно помеченные. Просто подключите их один к одному.
  3. PWM (Pulse-width modulation): контроллер двигателя будет иметь как вход ШИМ, так и цифровой вход для каждого двигателя. Подключите входной контакт PWM контроллера двигателя к выходному контакту ШИМ на микроконтроллере. Соедините каждый цифровой входной контакт контроллера двигателя с цифровым выходным выводом на микроконтроллере.
  4. R / C: Чтобы подключить микроконтроллер к контроллеру двигателя R / C, вам необходимо подключить сигнальный контакт к цифровому выходу на микроконтроллере.

Независимо от способа связи логика контроллера двигателя и микроконтроллер должны совместно использовать один и тот же опорный сигнал заземления. Это достигается путем соединения контактов GND (земля) вместе.

В первую очередь нужно соединить контакты одного и того же логического высокого уровня. Этого можно добиться, используя тот же вывод V+ для питания оба устройства. Переключатель логического уровня требуется, если устройства не используют одни и те же логические уровни (например, 3.3V и 5V)

Подключение датчиков к микроконтроллеру

При изготовлении робота обязательно используются сенсорные устройстве -в первую очередь датчики. Датчики могут быть сопряжены с микроконтроллерами аналогично контроллерам двигателя. Датчики (сенсоры) могут использовать следующие типы связи:

  1. Цифровой: датчик имеет цифровой вывод сигнала, который подключается непосредственно к цифровому выходу микроконтроллера. Простой переключатель можно рассматривать как цифровой датчик.
  2. Аналоговый: аналоговые датчики производят аналоговый сигнал напряжения, который должен считываться аналоговым выводом. Если ваш микроконтроллер не имеет аналоговых контактов, вам понадобится отдельная аналого-цифровая схема (АЦП). Кроме того, некоторые датчики с требуемой схемой питания обычно имеют три контакта: V+, GND и Signal. Например, если датчик представляет собой простой переменный резистор, вам потребуется создать делитель напряжения для считывания полученного переменного напряжения.
  3. Стандартный или I2C: здесь применяются те же принципы связи, которые описаны для контроллеров двигателей.

Устройство связи с микроконтроллером

Большинство коммуникационных устройств (например, XBee, Bluetooth) используют последовательную связь. Следовательно требуются те же соединения RX, TX, GND и V+. Важно отметить, что, хотя несколько последовательных подключений могут использоваться совместно на одних и тех же выводах RX и TX, для предотвращения перекрестных помех, ошибок и сбоев в целом требуется надежное управление.

Если у вас очень мало последовательных устройств, часто бывает проще использовать один последовательный порт для каждого из них.

Колеса для двигателей

В идеале, вы выбрали колеса или звездочки, которые предназначены для установки на вал вашего электродвигателя. Возможно, вам придется подгонять отверстия для соединения двигателей, рулевого управления и различных проводов в одну конструкцию.

Электрические компоненты для рамы

При изготовлении робота вы можете смонтировать электронные компоненты на раме робота при помощи множества методов. Прежде всего убедитесь в том, что ваши крепления надежны. Основные методы креплений включают в себя: винты, гайки, двухсторонний скотч, липучки, клей, стяжки и т. д.

Практическая часть

В нашем случае мы будем использовать набор Lego EV3 и для создания каркаса робота нам потребуются только стандартные детали, которые уже входят в состав набора. Изготовление робота на основе набора Лего является прежде всего относительно несложным и достаточно быстрым.

Механические детали набора 45544

Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского хакспейса MakeItLab, Олега Евсегнеева.

Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

1. Системное мышление

Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

Читайте также:  Беспроводные выключатели света отзывы

Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

Комментарий Олега Евсегнеева: Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

2. Мышление программиста

Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

3. Способность к самобучению

О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

4. Математика

В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

5. Физика и прикладная математика

Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

6. Анализ и выбор решения

Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования — ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

Комментарий Олега Евсегнеева: Анализ – это способность разбирать интересующий предмет на кирпичики. Способность достать до сути механизма или явления. Без этого невозможно даже правильно составить задание на проектирование робота. А ошибки на этом этапе часто бывают фатальными для всей идеи.

7. Хорошие коммуникационные способности

Специалисту по робототехнике с его универсальными познаниями часто приходится объяснять свои концепции неспециалистам в какой-либо области. Например, вам может быть придется объяснять инженеру-механику проблемы высокоуровневого программирования или специалисту в области вычислительных систем недостатки механической конструкции. Хороший робототехник выполняет роль канала связи между различными дисциплинами. Поэтому коммуникативные навыки имеют жизненно важное значение. Очень важно уметь эффективно использовать свои речевые и письменные навыки. Также большим плюсом будут хорошие навыки в обучении.

Комментарий Олега Евсегнеева: Прямое общение – часто самый быстрый и эффективный способ передать информацию. Замкнутый человек лишается критики со стороны коллег, и тем самым рискует надолго зависнуть на пути неправильного решения. Неправильные решения приводят к провалу проекта, и тем самым сильно бьют по мотивации.

8. Технология проектирования

Быть специалистом в технологии проектирования означает способность проектировать вещи, которые действительно работают. Это также подразумевает способность выяснить, почему что-то работает неправильно и найти возможные решения, требующие навыков в ремонте. Робототехника включает в себя широкий спектр технологий, так что навыки в технологии проектирования означают, что вы можете эффективно изолировать источник проблемы и предложить эффективные решения.

Комментарий Олега Евсегнеева: С самых первых проектов любой робототехник должен стремиться обязательно пройти через этап проектирования. Только так из него может вырасти матерый конструктор, способный эффективно донести все свои идеи до коллектива. Сбор, что называется, на коленке, в случае сложных систем часто приводит к провалу. Современная робототехника основана на высокоточных компонентах, которые требуют тщательной компоновки и продумывания.

9. Решение сложных проблем

Как можно понять, исходя из предыдущих навыков, многие становятся робототехниками, используя свои навыки решения сложных задач. Это относится к предвидению проблем, чтобы скорректировать их прежде, чем они могут возникнуть, и устранить их, если они все-таки возникают.

10. Настойчивость

Наконец, с учетом сложной природы робототехники, настойчивость – это довольно необходимый навык. Это может быть настойчивость в попытках найти решение особенно трудной задачи или упорство в попытке объяснить коллегам сложную проблему. Хороший робототехник будет также поддерживать свое постоянство и надежность, проверяя себя, чтобы быть компетентным и адаптируемым, что и требуется от робототехника.

Комментарий Олега Евсегнеева: Настойчивость тесно связана с мотивацией. Инженер всегда должен уметь отвечать на вопрос «зачем?». Имея ответ и твердую цель, можно добиться решения самых сложных задач, заодно собрав вокруг своей идеи сообщество единомышленников.

А что вы думаете по поводу необходимых навыков для робототехника? Если вам есть что добавить — ждем ваши мысли в комментариях!

Ссылка на основную публикацию
Чернила светятся в ультрафиолете
Употребление симпатических (невидимых) чернил подразумевает запись неразличимую в обычных обстоятельствах, но появляющуюся после фото, химической или физической проявки. Это есть...
Формула частота в excel
При анализе данных периодически возникает задача подсчитать количество значений, попадающих в заданные интервалы "от и до" (в статистике их называют...
Формула тейлора с остатком в форме пеано
Формулировка: Если существует , то представима в следующем виде: Это выражение называется формулой Тейлора с остаточным членом в форме Пеано...
Чернила для принтера в шприцах
Заправочные комплекты INKO в шприцах 3х20 мл., с высококачественными чернилами на основе красителя (Dye ink) и пигментные чернила (Pigment ink)...
Adblock detector