Что можно сделать с компьютерного блока питания

Что можно сделать с компьютерного блока питания

Вторая жизнь компьютерного БП

Автор: Sobiratel_sxem, sobiratel_sxem@mail.ru
Опубликовано 10.12.2013
Создано при помощи КотоРед.

Всем привет. Не так давно проводя уборку в гараже наткнулся на старый компьютерный БП. Для современных компьютеров он уже слабоват, а выкидывать было жалко. Тогда и родилась идея создания на его основе мощного источника питания для испытания различных радиолюбительских конструкций. В интернете много информации по переделке той или иной модели компьютерных блоков питания под регулируемые лабораторные источники или под другие цели.

После измерения радиолюбительским осциллографом Сага выходных пульсаций было выявлено, что компьютерный БП на выходе даёт высокий уровень высокочастотных помех. Тогда было принято решение ограничиться минимальной переделкой самого БП, а регулировку выходного напряжения выполнить по классической схеме. Это связано с тем, что для сглаживания данных помех нужна батарея конденсаторов, разной ёмкости, а общая суммарная ёмкость получается большой. (т.е. при маленькой нагрузке конденсаторы будут долго разряжаться и изменение выходного напряжения будет запаздывать за непосредственной регулировкой движком переменного резистора, при модернизации обратной связи).

Итак, то что у меня получилось я сегодня Вам и хочу предложить. Начнём с переделки самого БП.

На фото 1 приведён внешний вид уже переделанного БП. Разберём всё по пунктам на модели переделанного мной БП (Модель указана на схеме)

1. Выпаиваем из БП все лишние провода, оставляем только нужную нам шину 12 Вольт и 5 Вольт.

2. Замыкаем на землю провод запуска БП. На плате он подписан pc on и выведен зелёным проводом.

3. Так как импульсный БП нельзя включать без нагрузки, то на шину 5 вольт следует подключить нагрузку 0.2-0.5 А. Для этого я использовал 2 параллельно соединённых резистора 22 Ом 10 Ватт.

4. Далее увеличиваем конденсаторы ( 200 Вольт, 330 микрофарад, находятся на фото 1 слева у радиатора ) до 1000 микрофарад 200 вольт.

5. Устанавливаем дополнительные вентилятор на крышку БП, так, что бы он нагнетал воздух внутрь БП и соединяем его параллельно встроенному вентилятору.

На этом переделку БП можно считать оконченной. После этого его можно смело включать, не опасаясь выхода из строя и проверять на нагрузку.

Если БП запускается и держит нагрузку добавляем блок конденсаторов С1-С13, а так же классическую схему регулирования напряжения на основе составного транзистора VT1-VT2. По постоянному току конденсаторы включены параллельно и их ёмкость складывается, а значит суммарная ёмкость получается большой, что способствует хорошей работе БП на динамическую нагрузку.

По переменному же току конденсаторы так же соединены параллельно, но переменное напряжение более низкой частоты лучше проходит через конденсатор большей ёмкости и сглаживается, а напряжение более высокой частоты через конденсатор меньшей ёмкости. Этим и обусловлено соединение в батарею конденсаторов разной ёмкости. После установки данного блока конденсаторов высокочастотные помехи БП значительно уменьшились до уровня пригодного для испытания большинства радиолюбительских конструкций. Готовый блок конденсаторов и схема регулирования в сборе приведена на рис. 3.

На Рис 2 показан переделанный БП в сборе.

На рис 4 источник питания без установленной верхней крышки.

А на рис 5 источник питания в сборе.

Светодиоды HL1-HL3 являются индикатором напряжения на составном транзисторе, а так же выполняют роль дополнительной подсветки. Индикатор La1 является индикатором включения питания.

Амперметр подойдёт любой на ток полного отклонения 10-12 А, включается последовательно с любой из выходных клем (на схеме не указан).

Выключатель S1 любой на ток более 2-3 А.

Все остальные используемые детали указаны на схеме.

Основным преимуществом данного источника питания является простота его изготовления, кроме того он не нуждается в налаживании и начинает работать сразу после включения. При нагрузке 10 Ампер напряжение не падает ниже 9 вольт, чего для большинства конструкций вполне достаточно.

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Читайте также:  Фон плавный переход цвета

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

Читайте также:  Чем открыть sgdt файл

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

Читайте также:  Вычислить синус угла между векторами

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить "стабильные" +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

Давно пылится в углу старенький компьютер?
Вам вполне по силам дать вторую жизнь комплектующим вашего видавшего виды аппарата.

Блок питания необходимая вещь для каждого электронщика, потому, что для питания электронных самоделок нужен источник питания со стабилизированным выходным напряжением от 3 до 12 вольт и силой тока до 10 А, а также встроенной защитой от короткого замыкания. Для этого вполне подойдет компьютерный блок питания.

Основная задача при переделке компьютерного блока питания, определение необходимых проводов в жгуте ( +3.3 вольта, 5 вольт, 12 вольт) и распайка их под свои нужды.

Процесс изготовления

1. Разбираем компьютерный блок питания.


2. Выпаиваем лишние провода ( Подробно изложено в видеоролике).


2. Подготавливаем штатное место для раздаточной колодки напряжения.


3. Паяем колодку ( Подробно изложено в видеоролике).


4. Штатно собираем блок питания.

5. Проверяем работу блока, снимаем напряжения с колодки раздачи.

Видео по переделке

Видео ролик переделки компьютерного блока питания под свои нужды.

Ссылка на основную публикацию
Чернила светятся в ультрафиолете
Употребление симпатических (невидимых) чернил подразумевает запись неразличимую в обычных обстоятельствах, но появляющуюся после фото, химической или физической проявки. Это есть...
Формула частота в excel
При анализе данных периодически возникает задача подсчитать количество значений, попадающих в заданные интервалы "от и до" (в статистике их называют...
Формула тейлора с остатком в форме пеано
Формулировка: Если существует , то представима в следующем виде: Это выражение называется формулой Тейлора с остаточным членом в форме Пеано...
Чернила для принтера в шприцах
Заправочные комплекты INKO в шприцах 3х20 мл., с высококачественными чернилами на основе красителя (Dye ink) и пигментные чернила (Pigment ink)...
Adblock detector