Чему равен arctg бесконечности

Чему равен arctg бесконечности

Арктангенс, arctg

Определение и обозначения

Арктангенс обозначается так:
.

График функции арктангенс

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Определение и обозначения

Арккотангенс обозначается так:
.

График функции арккотангенс

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(– x ) = arctg(–tg arctg x ) = arctg(tg(–arctg x )) = – arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(– x ) = arcctg(–ctg arcctg x ) = arcctg(ctg(π–arcctg x )) = π – arcctg x ≠ ± arcctg x .

Свойства – экстремумы, возрастание, убывание

Функции арктангенс и арккотангенс непрерывны на своей области определения, то есть для всех x . (см. доказательство непрерывности). Основные свойства арктангенса и арккотангенса представлены в таблице.

y = arctg x y = arcctg x
Область определения и непрерывность – ∞ – ∞
Множество значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы, минимумы нет нет
Нули, y = 0 x = 0 нет
Точки пересечения с осью ординат, x = 0 y = 0 y = π/ 2
π

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

x arctg x arcctg x
град. рад. град. рад.
– ∞ – 90° 180° π
– 60° 150°
– 1 – 45° 135°
– 30° 120°
90°
30° 60°
1 45° 45°
60° 30°
+ ∞ 90°

Формулы

Формулы суммы и разности

при

при 0,;xy > 1" style="width:122px;height:18px;vertical-align:-10px;background-position: -138px -570px;">

при 1" style="width:122px;height:18px;vertical-align:-10px;background-position: -261px -570px;">

при -1" style="width:76px;height:18px;vertical-align:-10px;background-position: -550px -570px;">

при 0,;xy

при

Выражения через логарифм, комплексные числа

Выражения через гиперболические функции

Производные

Производные высших порядков:
Пусть . Тогда производную n-го порядка арктангенса можно представить одним из следующих способов:
;
.
Символ означает мнимую часть стоящего следом выражения.

Аналогично для арккотангенса. Пусть . Тогда
;
.

Интегралы

Делаем подстановку x = tg t и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложение в степенной ряд

При |x| ≤ 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс, соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x ) = x
ctg(arcctg x ) = x .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x ) = x при
arcctg(ctg x ) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 14-07-2014 Изменено: 23-12-2018

Чётность и возрастание

Чтобы получить график арктангенса, используется кривая тангенса путём замены местами осей ординат и абсцисс. Для устранения многозначности используется интервал, на котором функция монотонна. Это определение считается основным значением арктангенса. Если показатель отрицательный, значит функция нечётная.

Главное свойство arctg — бесконечность на его области определения (для числа х). Так как y = arctg x, где y равен нулю, тогда x = 0, значит и arctg 0. При выполнении расчётов используется таблица арктангенсов.

В ней указаны значения в градусах и радианах, при определённых данных аргумента. Если вычисления выполняются на математическом веб-ресурсе, пользователю предоставляется возможность бесплатно использовать онлайн-калькулятор и таблицу Брадиса. Можно вычислить синус, косинус, производную арктангенса в экселе либо с помощью языка программирования Паскаль.

Читайте также:  Госуслуги личный кабинет регистрация физического лица владимир

Чтобы посчитать величину правильно, используются свойства функций. При помощи определения арксинуса выполняется уравнение sin (arcsin a)=a. Свойства других величин:

  • косинус: cos (arccos a)=a;
  • тангенс: tg (arctg a)=a;
  • катангенс: ctg (arcctg a)=a.

В первых двух свойствах соблюдается условие −1≤a≤1. Если значение а выходит за указанные пределы, тогда функции нет смысла определять. Учитывая свойства синуса арксинуса, нельзя записать sin (arcsin8)=8, так как выражение sin (arcsin8) не имеет смысла. Аналогичный ответ получается, если необходимо определить разность арккосинуса sqrt (квадратный корень) из пяти.

Противоположные числа

Формулы, с помощью которых производится расчёт связи между производными: arcsin (-a)=-arcsina, arccos (-a)=пи-arccosa, arctg (-a)=-arctga, arcctg (-a)=пи-arcctga. Должно соблюдаться условие −1≤a≤1. Если а принадлежит промежутку −∞ до +∞, тогда arctg (−a), и arcctg (−a).

Чтобы доказать первое отношение с противоположными числами, рассматривается определение arcsin (−a). Число либо угол находится в пределах −π/2-π/2 и синус, равный −a. Учитывая определение арксинуса, можно записать следующее равенство: −π/2≤arcsin a≤π/2.

На основе свойств неравенств, выполняется умножение составных частей на -а. Заменив знаки неравенств на противоположные, можно произвести умножение на -1: −π/2≤−arcsin a≤π/2.

Необходимо доказать, что sin (−arcsin a)=−a. Для этого рекомендуется придерживаться свойств противоположных углов. Из рассмотренных примеров можно сделать вывод: sin (−arcsin a)=−sin (arcsin a)=−a.

Аналогичным способом можно доказать, что arccos (−a)=π−arccos a. Используя определение производной функции, подтверждается, что π−arccos a — угол либо число, значение которого колеблется в пределах 0-π, а cos (π−arccos a)=−a. Придерживаясь определения арккосинуса числа, выполняется неравенство 0≤arccos a≤π.

Используя свойства неравенств, перемножаются поочерёдно его части на -1, сменяются знаки. Решается неравенство из сумм частей и числа пи, при этом сохраняются знаки: −π+π≤−arccosa+π≤0+π. Получается двойное выражение вида 0≤π−arccos a≤π.

Если средняя часть уравнения равняется −a, тогда, придерживаясь формулы приведения, записывается следующее равенство cos (π−arccos a)=−cos (arcos a). С помощью свойства производной косинуса завершается доказательство cos (π−arccos a)=−cos (arcos a)=−a. Аналогичной схемы рекомендуется придерживаться при рассмотрении свойств арккотангенсов и арктангенсов противоположных знаков. Плюс утверждения — возможность избавиться от вычисления производных функций отрицательных чисел.

Читайте также:  Установка камер видеонаблюдения самостоятельно

Сложение величин

Свойство, согласно которому устанавливается связь между arccos arcsin числа а, и между arctg и arcctg переменной, записывается следующим образом: arcsina+arccosa=пи/2, arctga+arcctga=пи/2. Чтобы доказать первую часть равенства, где расписана сумма производных синуса и косинуса числа а, делённая на два, необходимо рассмотреть следующую запись: arcsin a=π/2−arccos a.

Основываясь на определение арксинуса, можно доказать, что выражение верно, когда π/2−arccos a — угол (цифровое значение), лежащий на промежутке −π/2 до π/2, а синус угла равен а. Чтобы показать такую действительность, используется определение арккосинуса и равенство 0≤arccos a≤π. Последнее выражение считается справедливым.

С учётом свойств неравенств, умножаются части на минус один, изменяются знаки. Полученные значения суммируются с числом π/2. Выполнив перечисленные действия, получается неравенство −π/2≤π/2−arccosa≤π/2. Чтобы показать, что sin (π/2−arccos a)=a, используется формула приведения, свойство производной функции косинус.

Доказано, что сумма arccos и arccos a равна π/2. Аналогично понадобится доказать, что сумма арккотангенса числа a и арктангенса равняется π/2. Главное предназначение таких свойств заключается в том, что они выражают арксинус через акрккосинус одного числа, а также арккотангенс через арктангенс и наоборот.

Примеры и задачи

Задания на свойства функций и их производных от числа либо угла можно решить с помощью разных программ: excel, pascal. Действия будут зависеть от условий задачи. Решение должно основываться на основные признаки, доказанные либо утверждённые равенства. Свойствам производных отвечают следующие выражения:

Равенства при определённых условий следуют из определений функций числа. Чтобы понять утверждения, необходимо доказать: arcsin (sin α)=α, при этом должно выполняться требование −π/2≤α≤π/2. Аналогичным образом доказываются оставшиеся свойства. Если обозначить sin α=а, которое находится на отрезке [−1, 1], тогда получится выражение arcsin (sin α)=α, то есть arcsin a=α. Известно из условий задач, что −π/2≤α≤π/2. При решении через а обозначили sin α.

Поэтому можно записать, что arcsin a=α, что эквивалентно определению производной функции синуса. Вывод: arcsin (sin α)=α при условии, что −π/2≤α≤π/2. Разные свойства, связанные с синусом и косинусом, тангенсом и котангенсом, можно применить на практике.

Известно, аrcsin sin (-15)= -15 град., arccos (cos (2π/3))=2π/3, arctg (tg (0,2))=0,2. Нужно отметить, что выражение arcsin (sin α) справедливо на отрезке −π/2≤α≤π/2. Но равенство arcsin (sin α)=α имеет смысл только при соблюдении этого условия. Нельзя утверждать, что arcsin (sin (7π/4))=7π/4, так как 7π/4 не принадлежит указанному интервалу (−π/2-π/2).

Запись arccos (cos α) правдивая, не только при условии, что 0≤α≤π. Выражение arccos (cos α)=α считается справедливым только при таком условии. Поэтому arccos (cos (−3π))=−3π не верно, так как −3π не принадлежит указанному отрезку. Схожие утверждения логичны и для arcctg (ctg α), arctg (tg α).

Читайте также:  Профессиональные программы для восстановления данных

Используя определение всех функций, их признаки, тригонометрические формула можно получить другие равенства и уравнения, в которых отображается связь между arcsin, arcctg, arctg и arccos. Чтобы быстро решать задачи на данную тематику, рекомендуется выучить некоторые утверждённые равенства (arcsin 0=0, arccos 1=0, как угол arccos (-1)=180 градусов). Они описаны в специальных таблицах, которые можно найти в глобальной сети либо в учебниках по математике.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки "арк" обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x).

Изобразим график функции арксинус:

Свойства функции арксинус y = arcsin(x).

· Областью определения функции арксинус является интервал от минус единицы до единицы включительно: .

· Область значений функции y = arcsin(x): .

· Функция арксинус — нечетная, так как .

· Функция y = arcsin(x) возрастает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба (0; 0), она же ноль функции.

Функция арккосинус y = arccos(x).

График функции арккосинус имеет вид:

Свойства функции арккосинус y = arccos(x).

· Область определения функции арккосинус: .

· Область значений функции y = arccos(x): .

· Функция не является ни четной ни нечетной, то есть, она общего вида.

· Функция арккосинус убывает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба .

Функция арктангенс y = arctg(x).

График функции арктангенс имеет вид:

Свойства функции арктангенс y = arctg(x).

· Область определения функции y = arctg(x): .

· Область значений функции арктангенс: .

· Функция арктангенс — нечетная, так как .

· Функция возрастает на всей области определения, то есть, при .

· Функция арктангенс вогнутая при , выпуклая при .

· Точка перегиба (0; 0), она же ноль функции.

· Горизонтальными асимптотами являются прямые при и при . На чертеже они показаны зеленым цветом.

Функция арккотангенс y = arcctg(x).

Изобразим график функции арккотангенс:

Свойства функции арккотангенс y = arcctg(x).

· Областью определения функции арккотангенс является все множество действительных чисел: .

· Область значений функции y = arcctg(x): .

· Функция арккотангенс не является ни четной ни нечетной, то есть, она общего вида.

· Функция убывает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба .

· Горизонтальными асимптотами являются прямые при (на чертеже показана зеленым цветом) и y = 0 при .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8774 — | 7582 — или читать все.

Ссылка на основную публикацию
Формула частота в excel
При анализе данных периодически возникает задача подсчитать количество значений, попадающих в заданные интервалы "от и до" (в статистике их называют...
Уравнение плоскости по двум пересекающимся прямым
УСЛОВИЕ: Составить уравнение плоскости, проходящей через две параллельные прямые x-2/3=y+1/2=z-3/-2 x-1/3=y-2/2=z+3/-2 Добавил yelymcheav , просмотры: ☺ 1976 ⌚ 2019-05-14 15:35:56....
Уравнение баланса мощностей формула
При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей....
Формула тейлора с остатком в форме пеано
Формулировка: Если существует , то представима в следующем виде: Это выражение называется формулой Тейлора с остаточным членом в форме Пеано...
Adblock detector